Summary for Policymakers

Drafting Authors: Hans-O. Pörtner (Germany), Debra C. Roberts (South Africa), Helen Adams (United Kingdom), Carolina Adler (Switzerland/Chile/Australia), Paulina Aldunce (Chile), Elham Ali (Egypt), Rawshon Ara Begum (Malaysia/Australia/Bangladesh), Richard Betts (United Kingdom), Rachel Bezner Kerr (Canada/USA), Robbert Biesbroek (The Netherlands), Joern Birkmann (Germany), Kathryn Bowen (Australia), Edwin Castellanos (Guatemala), Gueladio Cissé (Mauritania/Switzerland/France), Andrew Constable (Australia), Wolfgang Cramer (France), David Dodman (Jamaica/United Kingdom), Siri H. Eriksen (Norway), Andreas Fishlin (Switzerland), Matthias Garczeghen (Germany), Bruce Glavovic (New Zealand/South Africa), Elisabeth Gilmore (USA/Canada), Marjolijn Haasnoot (The Netherlands), Sherilee Harper (Canada), Toshihiro Hasegawa (Japan), Bronwyn Hayward (New Zealand), Yukiko Hirabayashi (Japan), Mark Howden (Australia), Kanungwe Kalaba (Zambia), Wolfgang Kiessling (Germany), Rodel Lasco (Philippines), Judy Lawrence (New Zealand), Maria Fernanda Lemos (Brazil), Robert Lempert (USA), Debora Ley (Mexico/Guatemala), Tabea Lissner (Germany), Salvador Lluch-Cota (Mexico), Sina Loeschke (Germany), Simone Lucatello (Mexico), Yong Luo (China), Brendan Mackey (Australia), Shobo Maharaaj (Germany/Trinidad and Tobago), Carlos Mendez (Venezuela), Katja Mintenbeck (Germany), Vincent Möller (Germany), Mariana Moncassim Vale (Brazil), Mike D Morecroft (United Kingdom), Aditi Mukherji (India), Michelle Mycoo (Trinidad and Tobago), Teri Mustonen (Finland), Johanna Nalau (Australia/Finland), Andrew Okem (South Africa/Nigeria), Jean Pierre Ometto (Brazil), Camille Parmesan (France/USA/United Kingdom), Mark Pelling (United Kingdom), Patricia Pinho (Brazil), Elvira Poloczanska (United Kingdom/Australia), Marie-Fanny Racault (United Kingdom/France), Diana Reckien (The Netherlands/Germany), Joy Pereira (Malaysia), Aromar Revi (India), Steven Rose (USA), Roberto Sanchez-Rodriguez (Mexico), E. Lisa F. Schipper (Sweden/United Kingdom), Daniela Schmidt (United Kingdom/Germany), David Schoeman (Australia), Rajib Shaw (Japan), Chandni Singh (India), William Solecki (USA), Lindsay Stringer (United Kingdom), Adelle Thomas (Bahamas), Edmond Totin (Benin), Christopher Trisos (South Africa), Maarten van Aalst (The Netherlands), David Viner (United Kingdom), Morgan Wairiu (Solomon Islands), Rachel Warren (United Kingdom), Pius Yanda (Tanzania), Zelina Zaiton Ibrahim (Malaysia)

Drafting Contributing Authors: Rita Adrian (Germany), Marlies Craig (South Africa), Frode Degvold (Norway), Kristie L. Ebi (USA), Katja Frieler (Germany), Ali Jamshed (Germany/Pakistan), Joanna McMillan (Germany/Australia), Reinhard Mechler (Austria), Mark New (South Africa), Nick Simpson (South Africa/Zimbabwe), Nicola Stevens (South Africa)

Visual Conception and Information Design: Andrés Alegria (Germany/Honduras), Stefanie Langsdorf (Germany)

Date: 27 February 2022 06:00 UTC
Table of Contents

SPM.A: Introduction ... 3
Box SPM.1: AR6 Common Climate Dimensions, Global Warming Levels and Reference Periods 6
SPM.B: Observed and Projected Impacts and Risks ... 7
 Observed Impacts from Climate Change ... 7
 Vulnerability and Exposure of Ecosystems and People ... 11
 Risks in the near term (2021-2040) .. 13
 Mid to Long-term Risks (2041–2100) .. 14
 Complex, Compound and Cascading Risks ... 18
 Impacts of Temporary Overshoot ... 20
SPM.C: Adaptation Measures and Enabling Conditions ... 20
 Current Adaptation and its Benefits .. 20
 Future Adaptation Options and their Feasibility ... 23
 Limits to Adaptation .. 26
 Avoiding Maladaptation ... 28
 Enabling Conditions .. 29
SPM.D: Climate Resilient Development ... 30
 Conditions for Climate Resilient Development .. 30
 Enabling Climate Resilient Development ... 32
 Climate Resilient Development for Natural and Human Systems .. 33
 Achieving Climate Resilient Development ... 35
SPM.A: Introduction

This Summary for Policymakers (SPM) presents key findings of the Working Group II (WGII) contribution to the Sixth Assessment Report (AR6) of the IPCC\(^1\). The report builds on the WGII contribution to the Fifth Assessment Report (AR5) of the IPCC, three Special Reports\(^2\), and the Working Group I (WGI) contribution to the AR6 cycle.

This report recognizes the interdependence of climate, ecosystems and biodiversity\(^3\), and human societies (Figure SPM.1) and integrates knowledge more strongly across the natural, ecological, social and economic sciences than earlier IPCC assessments. The assessment of climate change impacts and risks as well as adaptation is set against concurrently unfolding non-climatic global trends e.g., biodiversity loss, overall unsustainable consumption of natural resources, land and ecosystem degradation, rapid urbanisation, human demographic shifts, social and economic inequalities and a pandemic.

The scientific evidence for each key finding is found in the 18 chapters of the underlying report and in the 7 cross-chapter papers as well as the integrated synthesis presented in the Technical Summary (hereafter TS) and referred to in curly brackets \{\}. Based on scientific understanding, key findings can be formulated as statements of fact or associated with an assessed level of confidence using the IPCC calibrated language\(^4\). The WGII Global to Regional Atlas (Annex I) facilitates exploration of key synthesis findings across the WGII regions.

\(^1\) Decision IPCC/XLVI-3, The assessment covers scientific literature accepted for publication by 1 September 2021.

\(^2\) The three Special Reports are: ‘Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (SR1.5)’; ‘Climate Change and Land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (SRCCL)’; ‘IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC)’

\(^3\) Biodiversity: Biodiversity or biological diversity means the variability among living organisms from all sources including, among other things, terrestrial, marine and other aquatic ecosystems, and the ecological complexes of which they are part; this includes diversity within species, between species, and of ecosystems.

\(^4\) Each finding is grounded in an evaluation of underlying evidence and agreement. A level of confidence is expressed using five qualifiers: very low, low, medium, high and very high, and typeset in italics, e.g., *medium confidence*. The following terms have been used to indicate the assessed likelihood of an outcome or a result: virtually certain 99-100% probability, very likely 90-100%, likely 66-100%, as likely as not 33-66%, unlikely 0-33%, very unlikely 0-10%, exceptionally unlikely 0-1%. Assessed likelihood is typeset in italics, e.g., *very likely*. This is consistent with AR5 and the other AR6 Reports.
From climate risk to climate resilient development: climate, ecosystems (including biodiversity) and human society as coupled systems

(a) Main interactions and trends

Figure SPM.1: This report has a strong focus on the interactions among the coupled systems climate, ecosystems (including their biodiversity) and human society. These interactions are the basis of emerging risks from climate change, ecosystem degradation and biodiversity loss and, at the same time, offer opportunities for the future. (a) Human society causes climate change. Climate change, through hazards, exposure and vulnerability generates impacts and risks that can surpass limits to adaptation and result in losses and damages. Human society can adapt to, maladapt and mitigate climate change, ecosystems can adapt and mitigate within limits. Ecosystems and their biodiversity provision livelihoods and ecosystem services. Human society impacts ecosystems and can restore and conserve them. (b) Meeting the objectives of climate resilient development thereby supporting human, ecosystem and planetary health, as well as human well-being, requires society and ecosystems to move over (transition) to a more resilient state. The recognition of climate risks can strengthen adaptation and mitigation actions and transitions that reduce risks. Taking action is enabled by governance, finance, knowledge and capacity building, technology and catalysing conditions. Transformation entails system transitions strengthening the resilience of ecosystems and society (Section D). In a) arrow colours represent principle human society interactions (blue), ecosystem (including biodiversity) interactions (green) and the impacts of climate change and human activities, including losses and damages, under continued climate change (red). In b) arrow colours represent human system interactions (blue), ecosystem (including biodiversity) interactions (green) and reduced impacts from climate change and human activities (grey). {1.2, Figure 1.2, Figure TS.1}

The concept of risk is central to all three AR6 Working Groups. A risk framing and the concepts of adaptation, vulnerability, exposure, resilience, equity and justice, and transformation provide alternative, overlapping, complementary, and widely used entry points to the literature assessed in this WGII report.

Across all three AR6 working groups, risk provides a framework for understanding the increasingly severe, interconnected and often irreversible impacts of climate change on ecosystems, biodiversity, and human systems; differing impacts across regions, sectors and communities; and how to best reduce adverse

5 Risk is defined as the potential for adverse consequences for human or ecological systems, recognising the diversity of values and objectives associated with such systems.
consequences for current and future generations. In the context of climate change, risk can arise from the dynamic interactions among climate-related hazards\(^6\) (see Working Group I), the exposure\(^7\) and vulnerability\(^8\) of affected human and ecological systems. The risk that can be introduced by human responses to climate change is a new aspect considered in the risk concept. This report identifies 127 key risks\(^9\). \{1.3, 16.5\}

The vulnerability of exposed human and natural systems is a component of risk, but also, independently, an important focus in the literature. Approaches to analysing and assessing vulnerability have evolved since previous IPCC assessments. Vulnerability is widely understood to differ within communities and across societies, regions and countries, also changing through time.

Adaptation\(^10\) plays a key role in reducing exposure and vulnerability to climate change. Adaptation in ecological systems includes autonomous adjustments through ecological and evolutionary processes. In human systems, adaptation can be anticipatory or reactive, as well as incremental and/or transformational. The latter changes the fundamental attributes of a social-ecological system in anticipation of climate change and its impacts. Adaptation is subject to hard and soft limits\(^11\).

Resilience\(^12\) in the literature has a wide range of meanings. Adaptation is often organized around resilience as bouncing back and returning to a previous state after a disturbance. More broadly the term describes not just the ability to maintain essential function, identity and structure, but also the capacity for transformation.

This report recognises the value of diverse forms of knowledge such as scientific, as well as Indigenous knowledge and local knowledge in understanding and evaluating climate adaptation processes and actions to reduce risks from human-induced climate change. AR6 highlights adaptation solutions which are effective, feasible\(^13\), and conform to principles of justice\(^14\). The term climate justice, while used in different ways in different contexts by different communities, generally includes three principles: distributive justice which refers to the allocation of burdens and benefits among individuals, nations and generations; procedural justice which refers to who decides and participates in decision-making; and recognition which entails basic respect and robust engagement with and fair consideration of diverse cultures and perspectives.

\(^6\) Hazard is defined as the potential occurrence of a natural or human-induced physical event or trend that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, ecosystems and environmental resources. Physical climate conditions that may be associated with hazards are assessed in Working Group I as climatic impact-drivers.

\(^7\) Exposure is defined as the presence of people; livelihoods; species or ecosystems; environmental functions, services and resources; infrastructure; or economic, social or cultural assets in places and settings that could be adversely affected.

\(^8\) Vulnerability in this report is defined as the propensity or predisposition to be adversely affected and encompasses a variety of concepts and elements, including sensitivity or susceptibility to harm and lack of capacity to cope and adapt.

\(^9\) Key risks have potentially severe adverse consequences for humans and social-ecological systems resulting from the interaction of climate related hazards with vulnerabilities of societies and systems exposed.

\(^10\) Adaptation is defined, in human systems, as the process of adjustment to actual or expected climate and its effects in order to moderate harm or take advantage of beneficial opportunities. In natural systems, adaptation is the process of adjustment to actual climate and its effects; human intervention may facilitate this.

\(^11\) Adaptation Limits: The point at which an actor’s objectives (or system needs) cannot be secured from intolerable risks through adaptive actions.

- Hard adaptation limit - No adaptive actions are possible to avoid intolerable risks.
- Soft adaptation limit - Options may exist but are currently not available to avoid intolerable risks through adaptive action.

\(^12\) Resilience in this report is defined as the capacity of social, economic and ecosystems to cope with a hazardous event or trend or disturbance, responding or reorganising in ways that maintain their essential function, identity and structure as well as biodiversity in case of ecosystems while also maintaining the capacity for adaptation, learning and transformation. Resilience is a positive attribute when it maintains such a capacity for adaptation, learning, and/or transformation.

\(^13\) Feasibility refers to the potential for an adaptation option to be implemented.

\(^14\) Justice is concerned with setting out the moral or legal principles of fairness and equity in the way people are treated, often based on the ethics and values of society. Social justice comprises just or fair relations within society that seek to address the distribution of wealth, access to resources, opportunity and support according to principles of justice and fairness. Climate justice comprises justice that links development and human rights to achieve a rights-based approach to addressing climate change.
Effectiveness refers to the extent to which an action reduces vulnerability and climate-related risk, increases resilience, and avoids maladaptation15.

This report has a particular focus on transformation16 and system transitions in energy; land, ocean, coastal and freshwater ecosystems; urban, rural and infrastructure; and industry and society. These transitions make possible the adaptation required for high levels of human health and wellbeing, economic and social resilience, ecosystem health17, and planetary health18 (Figure SPM.1). These system transitions are also important for achieving the low global warming levels (WGIII) that would avoid many limits to adaptation19. The report also assesses economic and non-economic losses and damages19. This report labels the process of implementing mitigation and adaptation together in support of sustainable development for all as climate resilient development20.

[START BOX SPM.1 HERE]

\textbf{Box SPM.1: AR6 Common Climate Dimensions, Global Warming Levels and Reference Periods}

Assessments of climate risks consider possible future climate change, societal development and responses. This report assesses literature including that based on climate model simulations that are part of the fifth and sixth Coupled Model Intercomparison Project phase (CMIP5, CMIP6) of the World Climate Research Programme. Future projections are driven by emissions and/or concentrations from illustrative Representative Concentration Pathways (RCPs)21 and Shared Socio-economic Pathways (SSPs)22 scenarios, respectively23. Climate impacts literature is based primarily on climate projections assessed in AR5 or earlier, or assumed global warming levels, though some recent impacts literature uses newer projections based on the CMIP6 exercise. Given differences in the impacts literature regarding socioeconomic details and assumptions, WGII chapters contextualize impacts with respect to exposure, vulnerability and adaptation as appropriate for their literature, this includes assessments regarding sustainable development and climate resilient development. There are many emissions and socioeconomic pathways that are consistent with a given global warming outcome. These represent a broad range of possibilities as available in the literature assessed that affect future climate change exposure and vulnerability. Where available, WGII also assesses literature that is based on an integrative SSP-RCP framework where climate projections obtained under the RCP scenarios are analysed against the backdrop of various illustrative SSPs22. The WGII assessment combines multiple lines of evidence including impacts modelling driven by climate projections, observations, and process understanding. \{1.2, 16.5, 18.2, CCB CLIMATE, WGI SPM.C, WGI Box SPM.1, WGI 1.6, WGI Ch.12, AR5 WGI\}

15 Maladaptation refers to actions that may lead to increased risk of adverse climate-related outcomes, including via increased greenhouse gas emissions, increased or shifted vulnerability to climate change, more inequitable outcomes, or diminished welfare, now or in the future. Most often, maladaptation is an unintended consequence.

16 Transformation refers to a change in the fundamental attributes of natural and human systems.

17 Ecosystem health: a metaphor used to describe the condition of an ecosystem, by analogy with human health. Note that there is no universally accepted benchmark for a healthy ecosystem. Rather, the apparent health status of an ecosystem is judged on the ecosystem’s resilience to change, with details depending upon which metrics (such as species richness and abundance) are employed in judging it and which societal aspirations are driving the assessment.

18 Planetary health: a concept based on the understanding that human health and human civilisation depend on ecosystem health and the wise stewardship of ecosystems.

19 In this report, the term ‘losses and damages’ refers to adverse observed impacts and/or projected risks and can be economic and/or non-economic.

20 In the WGII report, climate resilient development refers to the process of implementing greenhouse gas mitigation and adaptation measures to support sustainable development for all.

21 RCP-based scenarios are referred to as RCPy, where ‘y’ refers to the level of radiative forcing (in watts per square meter, or W m-2) resulting from the scenario in the year 2100.

22 SSP-based scenarios are referred to as SSPx-y, where 'SSPx' refers to the Shared Socio-economic Pathway describing the socioeconomic trends underlying the scenarios, and ‘y’ refers to the level of radiative forcing (in watts per square meter, or W m-2) resulting from the scenario in the year 2100.

23 IPCC is neutral with regard to the assumptions underlying the SSPs, which do not cover all possible scenarios. Alternative scenarios may be considered or developed.
A common set of reference years and time periods are adopted for assessing climate change and its impacts and risks: the reference period 1850–1900 approximates pre-industrial global surface temperature, and three future reference periods cover the near-term (2021–2040), mid-term (2041–2060) and long-term (2081–2100). {CCB CLIMATE}

Common levels of global warming relative to 1850-1900 are used to contextualize and facilitate analysis, synthesis and communication of assessed past, present and future climate change impacts and risks considering multiple lines of evidence. Robust geographical patterns of many variables can be identified at a given level of global warming, common to all scenarios considered and independent of timing when the global warming level is reached. {16.5, CCB CLIMATE, WGI 4.2, WGI CCB11.1, WGI Box SPM.1}

WGI assessed increase in global surface temperature is 1.09 [0.95 to 1.20]°C in 2011-2020 above 1850-1900. The estimated increase in global surface temperature since AR5 is principally due to further warming since 2003–2012 (+0.19 [0.16 to 0.22] °C).25 Considering all five illustrative scenarios assessed by WGI, there is at least a greater than 50% likelihood that global warming will reach or exceed 1.5°C in the near-term, even for the very low greenhouse gas emissions scenario.26 {WGI CCB 2.3, WGI SPM A1.2, WGI SPM B1.3, WGI Table SPM.1}

[END BOX SPM.1 HERE]

SPM.B: Observed and Projected Impacts and Risks

Since AR5, the knowledge base on observed and projected impacts and risks generated by climate hazards, exposure and vulnerability has increased with impacts attributed to climate change and key risks identified across the report. Impacts and risks are expressed in terms of their damages, harms, economic, and non-economic losses. Risks from observed vulnerabilities and responses to climate change are highlighted. Risks are projected for the near-term (2021-2040), the mid (2041-2060) and long term (2081-2100), at different global warming levels and for pathways that overshoot 1.5°C global warming level for multiple decades.27 Complex risks result from multiple climate hazards occurring concurrently, and from multiple risks interacting, compounding overall risk and resulting in risks transmitting through interconnected systems and across regions.

Observed Impacts from Climate Change

SPM.B.1 Human-induced climate change, including more frequent and intense extreme events, has caused widespread adverse impacts and related losses and damages to nature and people, beyond natural climate variability. Some development and adaptation efforts have reduced vulnerability. Across sectors and regions the most vulnerable people and systems are observed to be disproportionately affected. The rise in weather

24 In the WGI report, square brackets [x to y] are used to provide the assessed very likely range, or 90% interval.
25 Since AR5, methodological advances and new datasets have provided a more complete spatial representation of changes in surface temperature, including in the Arctic. These and other improvements have also increased the estimate of global surface temperature change by approximately 0.1°C, but this increase does not represent additional physical warming since AR5.
26 Global warming of 1.5°C relative to 1850–1900 would be exceeded during the 21st century under the intermediate, high and very high greenhouse gas emissions scenarios considered in this report (SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively). Under the five illustrative scenarios, in the near term (2021–2040), the 1.5°C global warming level is very likely to be exceeded under the very high greenhouse gas emissions scenario (SSP5-8.5), likely to be exceeded under the intermediate and high greenhouse gas emissions scenarios (SSP2-4.5 and SSP3-7.0), more likely than not to be exceeded under the low greenhouse gas emissions scenario (SSP1-2.6) and more likely than not to be reached under the very low greenhouse gas emissions scenario (SSP1-1.9). Furthermore, for the very low greenhouse gas emissions scenario (SSP1-1.9), it is more likely than not that global surface temperature would decline back to below 1.5°C toward the end of the 21st century, with a temporary overshoot of no more than 0.1°C above 1.5°C global warming.
27 Overshoot: In this report, pathways that first exceed a specified global warming level (usually 1.5°C, by more than 0.1°C), and then return to or below that level again before the end of a specified period of time (e.g., before 2100). Sometimes the magnitude and likelihood of the overshoot is also characterized. The overshoot duration can vary from at least one decade up to several decades.
and climate extremes has led to some irreversible impacts as natural and human systems are pushed beyond their ability to adapt. \textit{(high confidence)} (Figure SPM.2) \{1.3, 2.3, 2.4, 2.6, 3.3, 3.4, 3.5, 4.2, 4.3, 4.5, 5.2, 5.12, 6.2, 7.2, 8.2, 9.6, 9.8, 9.10, 9.11, 10.4, 11.3, 12.3, 12.4, 13.10, 14.4, 14.5, 15.3, 16.2, CCP1.2, CCP3.2, CCP4.1, CCP5.2, CCP6.2, CCP7.2, CCP7.3, CCB EXTREMES, CCB ILLNESS, CCB SLR, CCB NATURAL, CCB DISASTER, CCB MIGRATE, Figure TS.5, TS B1\}

SPM.B.1.1 Widespread, pervasive impacts to ecosystems, people, settlements, and infrastructure have resulted from observed increases in the frequency and intensity of climate and weather extremes, including hot extremes on land and in the ocean, heavy precipitation events, drought and fire weather (\textit{high confidence}). Increasingly since AR5, these observed impacts have been attributed28 to human-induced climate change particularly through increased frequency and severity of extreme events. These include increased heat-related human mortality (\textit{medium confidence}), warm-water coral bleaching and mortality (\textit{high confidence}), and increased drought related tree mortality (\textit{high confidence}). Observed increases in areas burned by wildfires have been attributed to human-induced climate change in some regions (\textit{medium to high confidence}). Adverse impacts from tropical cyclones, with related losses and damages19, have increased due to sea level rise and the increase in heavy precipitation (\textit{medium confidence}). Impacts in natural and human systems from slow-onset processes29 such as ocean acidification, sea level rise or regional decreases in precipitation have also been attributed to human induced climate change (\textit{high confidence}). \{1.3, 2.3, 2.4, 2.5, 3.2, 3.4, 3.5, 3.6, 4.2, 5.2, 5.4, 5.6, 5.12, 7.2, 9.6, 9.8, 9.7, 9.8, 9.11, 11.3, Box 11.1, Box 11.2, Table 11.9, 12.3, 12.4, 13.3, 13.5, 13.10, 14.2, 14.5, 15.7, 15.8, 16.2, Box CCP5.1, CCP1.2, CCP2.2, CCP7.3, CCB EXTREME, CCB ILLNESS, CCB SLR, CCB DISASTER, WG1 9, WGI 11.3-11.8, WGI SPM.3, SROCC Ch. 4\}

SPM.B.1.2 Climate change has caused substantial damages, and increasingly irreversible losses, in terrestrial, freshwater and coastal and open ocean marine ecosystems (\textit{high confidence}). The extent and magnitude of climate change impacts are larger than estimated in previous assessments (\textit{high confidence}). Widespread deterioration of ecosystem structure and function, resilience and natural adaptive capacity, as well as shifts in seasonal timing have occurred due to climate change (\textit{high confidence}), with adverse socioeconomic consequences (\textit{high confidence}). Approximately half of the species assessed globally have shifted polewards or, on land, also to higher elevations (\textit{very high confidence}). Hundreds of local losses of species have been driven by increases in the magnitude of heat extremes (\textit{high confidence}), as well as mass mortality events on land and in the ocean (\textit{very high confidence}) and loss of kelp forests (\textit{high confidence}). Some losses are already irreversible, such as the first species extinctions driven by climate change (\textit{medium confidence}). Other impacts are approaching irreversibility such as the impacts of hydrological changes resulting from the retreat of glaciers, or the changes in some mountain (\textit{medium confidence}) and Arctic ecosystems driven by permafrost thaw (\textit{high confidence}). (Figure SPM.2a). \{2.3, 2.4, 3.4, 3.5, 4.2, 4.3, 4.5, 9.6, 10.4, 11.3, 12.3, 12.8, 13.3, 13.4, 13.10, 14.4, 14.5, 14.6, 15.3, 16.2, CCP1.2, CCP3.2, CCP4.1, CCP5.2, CCP6.1, CCP6.2, CCP7.2, CCP7.3, CCP5.2, Figure CCP5.4, CCB PALEO, CCB EXTREMES, CCB ILLNESS, CCB SLR, CCB DISASTER, CCB MOVING PLATE, Figure TS.5, TS B1, SROCC 2.3\}

28 Attribution is defined as the process of evaluating the relative contributions of multiple causal factors to a change or event with an assessment of confidence. \{Annex II Glossary, CWGB ATTRIB\}

29 Impacts of climate change are caused by slow onset and extreme events. Slow onset events are described among the climatic-impact drivers of the WGI AR6 and refer to the risks and impacts associated with e.g., increasing temperature means, desertification, decreasing precipitation, loss of biodiversity, land and forest degradation, glacial retreat and related impacts, ocean acidification, sea level rise and salinization (https://interactive-atlas.ipcc.ch).
Impacts of climate change are observed in many ecosystems and human systems worldwide

(a) Observed impacts of climate change on ecosystems

<table>
<thead>
<tr>
<th>Ecosystems</th>
<th>Changes in ecosystem structure</th>
<th>Species range shifts</th>
<th>Changes in timing (phenology)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Terrestrial</td>
<td>Freshwater</td>
<td>Ocean</td>
</tr>
<tr>
<td>Global</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australasia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central and South America</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Islands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antarctic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediterranean region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical forests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountain regions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deserts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodiversity hotspots</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Confidence in attribution to climate change:
- High or very high
- Medium
- Low
- Evidence limited, insufficient
- na Not applicable

Impacts to human systems in panel (b):
- Increasing adverse impacts
- Increasing adverse and positive impacts

(b) Observed impacts of climate change on human systems

<table>
<thead>
<tr>
<th>Human systems</th>
<th>Impacts on water scarcity and food production</th>
<th>Impacts on health and wellbeing</th>
<th>Impacts on cities, settlements and infrastructure</th>
<th>Impacts on damages to infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water scarcity</td>
<td>Infectious diseases</td>
<td>Heat, malnutrition and other</td>
<td>Flooding and associated damages</td>
</tr>
<tr>
<td></td>
<td>Agriculture and crop production</td>
<td></td>
<td>Mental health</td>
<td>Floods and storm-induced damages</td>
</tr>
<tr>
<td></td>
<td>Animal and livestock health and productivity</td>
<td></td>
<td>Displacement</td>
<td>Coastal areas</td>
</tr>
<tr>
<td>Global</td>
<td>Groundwater overexploitation</td>
<td></td>
<td></td>
<td>Damage to infrastructure</td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australasia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central and South America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Islands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cities by the sea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediterranean region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountain regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure SPM.2: Observed global and regional impacts on ecosystems and human systems attributed to climate change. Confidence levels reflect uncertainty in attribution of the observed impact to climate change. Global assessments focus on large studies, multi-species, meta-analyses and large reviews. For that reason they can be assessed with higher confidence than regional studies, which may often rely on smaller studies that have more limited data. Regional assessments consider evidence on impacts across an entire region and do not focus on any country in particular. (a) Climate change has already altered terrestrial, freshwater and ocean ecosystems at global scale, with multiple impacts evident at regional and local scales where there is sufficient literature to make an assessment. Impacts are evident on ecosystem structure, species geographic ranges and timing of seasonal life cycles (phenology) (for methodology and detailed references to chapters and cross-chapter papers see SMTS.1 and SMTS.1.1). (b) Climate change has already had diverse adverse impacts on human systems, including on water security and food production, health and well-being, and cities, settlements and infrastructure. The ± and – symbols indicate the direction of observed impacts, with a – denoting...
an increasing adverse impact and $a\pm$ denoting that, within a region or globally, both adverse and positive impacts have been observed (e.g., adverse impacts in one area or food item may occur with positive impacts in another area or food item). Globally, ‘$-$’ denotes an overall adverse impact; ‘Water scarcity’ considers, e.g., water availability in general, groundwater, water quality, demand for water, drought in cities. Impacts on food production were assessed by excluding non-climatic drivers of production increases; Global assessment for agricultural production is based on the impacts on global aggregated production; ‘Reduced animal and livestock health and productivity’ considers, e.g., heat stress, diseases, productivity, mortality; ‘Reduced fisheries yields and aquaculture production’ includes marine and freshwater fisheries/production; ‘Infectious diseases’ include, e.g., water-borne and vector-borne diseases; ‘Heat, malnutrition and other’ considers, e.g., human heat-related morbidity and mortality, labour productivity, harm from wildfire, nutritional deficiencies; ‘Mental health’ includes impacts from extreme weather events, cumulative events, and vicarious or anticipatory events; ‘Displacement’ assessments refer to evidence of displacement attributable to climate and weather extremes; ‘Inland flooding and associated damages’ considers, e.g., river overflows, heavy rain, glacier outbursts, urban flooding; ‘Flood/storm induced damages in coastal areas’ include damages due to, e.g., cyclones, sea level rise, storm surges. Damages by key economic sectors are observed impacts related to an attributable mean or extreme climate hazard or directly attributed. Key economic sectors include standard classifications and sectors of importance to regions (for methodology and detailed references to chapters and cross-chapter papers see SMTS.1 and SMTS.1.2).

SPM.B.1.3 Climate change including increases in frequency and intensity of extremes have reduced food and water security, hindering efforts to meet Sustainable Development Goals (high confidence). Although overall agricultural productivity has increased, climate change has slowed this growth over the past 50 years globally (medium confidence), related negative impacts were mainly in mid- and low latitude regions but positive impacts occurred in some high latitude regions (high confidence). Ocean warming and ocean acidification have adversely affected food production from shellfish aquaculture and fisheries in some oceanic regions (high confidence). Increasing weather and climate extreme events have exposed millions of people to acute food insecurity³⁰ and reduced water security, with the largest impacts observed in many locations and/or communities in Africa, Asia, Central and South America, Small Islands and the Arctic (high confidence). Jointly, sudden losses of food production and access to food compounded by decreased diet diversity have increased malnutrition in many communities (high confidence), especially for Indigenous Peoples, small-scale food producers and low-income households (high confidence), with children, elderly people and pregnant women particularly impacted (high confidence). Roughly half of the world’s population currently experience severe water scarcity for at least some part of the year due to climatic and non-climatic drivers (medium confidence). (Figure SPM.2b) [3.5, Box 4.1, 4.3, 4.4, 5.2, 5.4, 5.8, 5.9, 5.12, 7.1, 7.2, 9.8, 10.4, 11.3, 12.3, 13.5, 14.4, 14.5, 15.3, 16.2, CCP5.2, CCP6.2]

SPM.B.1.4 Climate change has adversely affected physical health of people globally (very high confidence) and mental health of people in the assessed regions (very high confidence). Climate change impacts on health are mediated through natural and human systems, including economic and social conditions and disruptions (high confidence). In all regions extreme heat events have resulted in human mortality and morbidity (very high confidence). The occurrence of climate-related food-borne and water-borne diseases has increased (very high confidence). The incidence of vector-borne diseases has increased from range expansion and/or increased reproduction of disease vectors (high confidence). Animal and human diseases, including zoonoses, are emerging in new areas (high confidence). Water and food-borne disease risks have increased regionally from climate-sensitive aquatic pathogens, including Vibrio spp. (high confidence), and from toxic substances from harmful freshwater cyanobacteria (medium confidence). Although diarrheal diseases have decreased globally, higher temperatures, increased rain and flooding have increased the occurrence of diarrheal diseases, including cholera (very high confidence) and other gastrointestinal infections (high confidence). In assessed regions, some mental health challenges are associated with increasing temperatures (high confidence), trauma from weather and climate extreme events (very high confidence), and loss of livelihoods and culture (high confidence). Increased exposure to wildfire smoke, atmospheric dust, and aeroallergens have been associated with climate-sensitive cardiovascular and respiratory distress (high confidence). Health services have been disrupted by extreme events such as floods (high confidence). [4.3, 5.12, 7.2, Box 7.3, 8.2, 8.3, Figure 8.10,

³⁰ Acute food insecurity can occur at any time with a severity that threatens lives, livelihoods or both, regardless of the causes, context or duration, as a result of shocks risking determinants of food security and nutrition, and used to assess the need for humanitarian action (IPCC Global Partners, 2019).
Box 8.6, 9.10, Figure 9.33, Figure 9.34, 10.4, 11.3, 12.3, 13.7, 14.4, 14.5, Figure 14.8, 15.3, 16.2, Table CCP5.1, CCP5.2.5, CCP6.2, Figure CCP6.3, Table CCB ILLNESS.1}

SPM.B.1.5 In urban settings, observed climate change has caused impacts on human health, livelihoods and key infrastructure (high confidence). Multiple climate and non-climate hazards impact cities, settlements and infrastructure and sometimes coincide, magnifying damage (high confidence). Hot extremes including heatwaves have intensified in cities (high confidence), where they have also aggravated air pollution events (medium confidence) and limited functioning of key infrastructure (high confidence). Observed impacts are concentrated amongst the economically and socially marginalized urban residents, e.g., in informal settlements (high confidence). Infrastructure, including transportation, water, sanitation and energy systems have been compromised by extreme and slow-onset events, with resulting economic losses, disruptions of services and impacts to wellbeing (high confidence). {4.3, 6.2, 7.1, 7.2, 9.9, 10.4, 11.3, 12.3, 13.6, 14.5, 15.3, CCP2.2, CCP4.2, CCP5.2}

SPM.B.1.6 Overall adverse economic impacts attributable to climate change, including slow-onset and extreme weather events, have been increasingly identified (medium confidence). Some positive economic effects have been identified in regions that have benefited from lower energy demand as well as comparative advantages in agricultural markets and tourism (high confidence). Economic damages from climate change have been detected in climate-exposed sectors, with regional effects to agriculture, forestry, fishery, energy, and tourism (high confidence), and through outdoor labour productivity (high confidence). Some extreme weather events, such as tropical cyclones, have reduced economic growth in the short-term (high confidence). Non-climatic factors including some patterns of settlement, and siting of infrastructure have contributed to the exposure of more assets to extreme climate hazards increasing the magnitude of the losses (high confidence). Individual livelihoods have been affected through changes in agricultural productivity, impacts on human health and food security, destruction of homes and infrastructure, and loss of property and income, with adverse effects on gender and social equity (high confidence). {3.5, 4.2, 5.12, 6.2, 7.2, 8.2, 9.6, 10.4, 13.10, 14.5, Box 14.6, 16.2, Table 16.5, 18.3, CCP6.2, CCB GENDER, CWGB ECONOMICS}

SPM.B.1.7 Climate change is contributing to humanitarian crises where climate hazards interact with high vulnerability (high confidence). Climate and weather extremes are increasingly driving displacement in all regions (high confidence), with small island states disproportionately affected (high confidence). Flood and drought-related acute food insecurity and malnutrition have increased in Africa (high confidence) and Central and South America (high confidence). While non-climatic factors are the dominant drivers of existing intrastate violent conflicts, in some assessed regions extreme weather and climate events have had a small, adverse impact on their length, severity or frequency, but the statistical association is weak (medium confidence). Through displacement and involuntary migration from extreme weather and climate events, climate change has generated and perpetuated vulnerability (medium confidence). {4.2, 4.3, 5.4, 7.2, 9.8, Box 9.9, Box 10.4, 12.3, 12.5, CCB MIGRATE, CCB DISASTER, 16.2}

Vulnerability and Exposure of Ecosystems and People

SPM.B.2 Vulnerability of ecosystems and people to climate change differs substantially among and within regions (very high confidence), driven by patterns of intersecting socio-economic development, unsustainable ocean and land use, inequity, marginalization, historical and ongoing patterns of inequity such as colonialism, and governance31 (high confidence). Approximately 3.3 to 3.6 billion people live in contexts that are highly vulnerable to climate change (high confidence). A high proportion of species is vulnerable to climate change (high confidence). Human and ecosystem vulnerability are interdependent (high confidence). Current unsustainable development patterns are increasing exposure of ecosystems and people to climate hazards (high confidence). {2.3, 2.4, 3.5, 4.3, 6.2, 8.2, 8.3, 9.4, 9.7, 10.4, 12.3, 14.5, 15.3, CCP5.2, CCP6.2, CCP7.3, CCP7.4, CCB GENDER}

31 Governance: The structures, processes and actions through which private and public actors interact to address societal goals. This includes formal and informal institutions and the associated norms, rules, laws and procedures for deciding, managing, implementing and monitoring policies and measures at any geographic or political scale, from global to local.
SPM.B.2.1 Since AR5 there is increasing evidence that degradation and destruction of ecosystems by humans increases the vulnerability of people (high confidence). Unsustainable land-use and land cover change, unsustainable use of natural resources, deforestation, loss of biodiversity, pollution, and their interactions, adversely affect the capacities of ecosystems, societies, communities and individuals to adapt to climate change (high confidence). Loss of ecosystems and their services has cascading and long-term impacts on people globally, especially for Indigenous Peoples and local communities who are directly dependent on ecosystems, to meet basic needs (high confidence). [2.3, 2.5, 2.6, 3.5, 3.6, 4.2, 4.3, 4.6, 5.1, 5.4, 5.5, 5.7, 5.8, 7.2, 8.1, 8.2, 8.3, 8.4, 8.5, 9.6, 10.4, 11.3, 12.2, 12.5, 13.8, 14.4, 14.5, 15.3, CCP1.2, CCP1.3, CCP2.2, CCP3, CCP4.3, CCP5.2, CCP6.2, CCP7.2, CCP7.3, CCP7.4, CCB ILLNESS, CCB MOVING PLATE, CCB SLR]}

SPM.B.2.2 Non-climatic human-induced factors exacerbate current ecosystem vulnerability to climate change (very high confidence). Globally, and even within protected areas, unsustainable use of natural resources, habitat fragmentation, and ecosystem damage by pollutants increase ecosystem vulnerability to climate change (high confidence). Globally, less than 15% of the land, 21% of the freshwater and 8% of the ocean are protected areas. In most protected areas, there is insufficient stewardship to contribute to reducing damage from, or increasing resilience to, climate change (high confidence). [2.4, 2.5, 2.6, 3.4, 3.6, 4.2, 4.3, 5.8, 9.6, 11.3, 12.3, 13.3, 13.4, 14.5, 15.3, CCP1.2 Figure CCP1.15, CCP2.1, CCP2.2, CCP4.2, CCP5.2, CCP 6.2, CCP7.2, CCP7.3, CCB NATURAL]}

SPM.B.2.3 Future vulnerability of ecosystems to climate change will be strongly influenced by the past, present and future development of human society, including from overall unsustainable consumption and production, and increasing demographic pressures, as well as persistent unsustainable use and management of land, ocean, and water (high confidence). Projected climate change, combined with non-climatic drivers, will cause loss and degradation of much of the world’s forests (high confidence), coral reefs and low-lying coastal wetlands (very high confidence). While agricultural development contributes to food security, unsustainable agricultural expansion, driven in part by unbalanced diets32, increases ecosystem and human vulnerability and leads to competition for land and/or water resources (high confidence). [2.2, 2.3, 2.4, 2.6, 3.4, 3.5, 3.6, 4.3, 4.5, 5.6, 5.12, 5.13, 7.2, 12.3, 13.3, 13.4, 13.10, 14.5, CCP1.2, CCP2.2, CCP5.2, CCP6.2, CCP7.2, CCP7.3, CCB NATURAL, CCB HEALTH]}

SPM.B.2.4 Regions and people with considerable development constraints have high vulnerability to climatic hazards (high confidence). Global hotspots of high human vulnerability are found particularly in West-, Central- and East Africa, South Asia, Central and South America, Small Island Developing States and the Arctic (high confidence). Vulnerability is higher in locations with poverty, governance challenges and limited access to basic services and resources, violent conflict and high levels of climate-sensitive livelihoods (e.g., smallholder farmers, pastoralists, fishing communities) (high confidence). Between 2010-2020, human mortality from floods, droughts and storms was 15 times higher in highly vulnerable regions, compared to regions with very low vulnerability (high confidence). Vulnerability at different spatial levels is exacerbated by inequity and marginalization linked to gender, ethnicity, low income or combinations thereof (high confidence), especially for many Indigenous Peoples and local communities (high confidence). Present development challenges causing high vulnerability are influenced by historical and ongoing patterns of inequity such as colonialism, especially for many Indigenous Peoples and local communities (high confidence). [4.2, 5.12, 6.2, 6.4, 7.1, 7.2, Box 7.1, 8.2, 8.3, Box 8.4, Figure 8.6, Box 9.1, 9.4, 9.7, 9.9, 10.3, 10.4, 10.6, 12.3, 12.5, Box 13.2, 14.4, 15.3, 15.6, 16.2, CCP6.2, CCP7.4]}

SPM.B.2.5 Future human vulnerability will continue to concentrate where the capacities of local, municipal and national governments, communities and the private sector are least able to provide infrastructures and basic services (high confidence). Under the global trend of urbanization, human vulnerability will also concentrate in informal settlements and rapidly growing smaller settlements (high confidence). In rural areas vulnerability will be heightened by compounding processes including high emigration, reduced habitability and high reliance on climate-sensitive livelihoods (high confidence). Key infrastructure systems including sanitation, water, health, transport, communications and energy will be increasingly vulnerable if design

32 Balanced diets feature plant-based foods, such as those based on coarse grains, legumes fruits and vegetables, nuts and seeds, and animal-source foods produced in resilient, sustainable and low-greenhouse gas emissions systems, as described in SRCCCL.
standards do not account for changing climate conditions (high confidence). Vulnerability will also rapidly rise in low-lying Small Island Developing States and atolls in the context of sea level rise and in some mountain regions, already characterised by high vulnerability due to high dependence on climate-sensitive livelihoods, rising population displacement, the accelerating loss of ecosystem services and limited adaptive capacities (high confidence). Future exposure to climatic hazards is also increasing globally due to socioeconomic development trends including migration, growing inequality and urbanization (high confidence). {4.5, 5.5, 6.2, 7.2, 8.3, 9.9, 9.11, 10.3, 10.4, 12.3, 12.5, 13.6, 14.5, 15.3, 15.4, 16.5, CCP2.3, CCP4.3, CCP5.2, CCP5.3, CCP5.4, CCP6.2, CCB SLR, CCB MIGRATE}

Risks in the near term (2021-2040)

SPM.B.3 Global warming, reaching 1.5°C in the near-term, would cause unavoidable increases in multiple climate hazards and present multiple risks to ecosystems and humans (very high confidence). The level of risk will depend on concurrent near-term trends in vulnerability, exposure, level of socioeconomic development and adaptation (high confidence). Near-term actions that limit global warming to close to 1.5°C would substantially reduce projected losses and damages related to climate change in human systems and ecosystems, compared to higher warming levels, but cannot eliminate them all (very high confidence). (Figure SPM.3, Box SPM.1) {WGI Table SPM.1, 16.4, 16.5, 16.6, CCP1.2, CCP5.3, CCB SLR, WGI SPM B1.3}

SPM.B.3.1 Near-term warming and increased frequency, severity and duration of extreme events will place many terrestrial, freshwater, coastal and marine ecosystems at high or very high risks of biodiversity loss (medium to very high confidence, depending on ecosystem). Near-term risks for biodiversity loss are moderate to high in forest ecosystems (medium confidence), kelp and seagrass ecosystems (high to very high confidence), and high to very high in Arctic sea-ice and terrestrial ecosystems (high confidence) and warm-water coral reefs (very high confidence). Continued and accelerating sea level rise will encroach on coastal settlements and infrastructure (high confidence) and commit low-lying coastal ecosystems to submergence and loss (medium confidence). If trends in urbanisation in exposed areas continue, this will exacerbate the impacts, with more challenges where energy, water and other services are constrained (medium confidence). The number of people at risk from climate change and associated loss of biodiversity will progressively increase (medium confidence). Vi

SPM.B.3.2 In the near term, climate-associated risks to natural and human systems depend more strongly on changes in their vulnerability and exposure than on differences in climate hazards between emissions scenarios (high confidence). Regional differences exist, and risks are highest where species and people exist close to their upper thermal limits, along coastlines, in close association with ice or seasonal rivers (high confidence). Risks are also high where multiple non-climate drivers persist or where vulnerability is otherwise elevated (high confidence). Many of these risks are unavoidable in the near-term, irrespective of emission scenario (high confidence). Several risks can be moderated with adaptation (high confidence). (Figure SPM.3, Section C) {2.5, 3.3, 3.4, 4.5, 6.2, 7.1, 7.3, 8.2, 11.6, 12.4, 13.6, 13.7, 13.10, 14.5, 16.4, 16.5, CCP2.2, CCP4.3, CCP5.3, CCB SLR, WGI Table SPM.1}

SPM.B.3.3 Levels of risk for all Reasons for Concern (RFC) are assessed to become high to very high at lower global warming levels than in AR5 (high confidence). Between 1.2°C and 4.5°C global warming level very high risks emerge in all five RFCs compared to just two RFCs in AR5 (high confidence). Two of these transitions from high to very high risk are associated with near-term warming: risks to unique and threatened systems at a median value of 1.5°C [1.2 to 2.0] °C (high confidence) and risks associated with extreme weather events at a median value of 2°C [1.8 to 2.5] °C (medium confidence). Some key risks contributing to the RFCs are projected to lead to widespread, pervasive, and potentially irreversible impacts at global warming levels of 1.5–2°C if exposure and vulnerability are high and adaptation is low (medium confidence). Near-term actions that limit global warming to close to 1.5°C would substantially reduce projected losses and damages related to climate change in human systems and ecosystems, compared to higher warming levels, but cannot eliminate them all (very high confidence). (Figure SPM.3b) {16.5, 16.6, CCB SLR}
Mid to Long-term Risks (2041–2100)

SPM.B.4 Beyond 2040 and depending on the level of global warming, climate change will lead to numerous risks to natural and human systems (high confidence). For 127 identified key risks, assessed mid- and long-term impacts are up to multiple times higher than currently observed (high confidence). The magnitude and rate of climate change and associated risks depend strongly on near-term mitigation and adaptation actions, and projected adverse impacts and related losses and damages escalate with every increment of global warming (very high confidence). (Figure SPM.3) {2.5, 3.4, 4.4, 5.2, 6.2, 7.3, 8.4, 9.2, 10.2, 11.6, 12.4, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 14.6, 15.3, 16.5, 16.6, CCP1.2; CCP2.2, CCP3.3, CCP4.3, CCP5.3, CCP6.3, CCP7.3}

SPM.B.4.1 Biodiversity loss, and degradation, damages to and transformation of ecosystems are already key risks for every region due to past global warming and will continue to escalate with every increment of global warming (very high confidence). In terrestrial ecosystems, 3 to 14% of species assessed13 will likely face very high risk of extinction14 at global warming levels of 1.5°C, increasing up to 3 to 18% at 2°C, 3 to 29% at 3°C, 3 to 39% at 4°C, and 3 to 48% at 5°C. In ocean and coastal ecosystems, risk of biodiversity loss ranges between moderate and very high for 1.5°C global warming level and is moderate to very high by 2°C but with more ecosystems at high and very high risk (high confidence), and increases to high to very high across most ocean and coastal ecosystems by 3°C (medium to high confidence, depending on ecosystem). Very high extinction risk for endemic species in biodiversity hotspots is projected to at least double from 2% between 1.5°C and 2°C global warming levels to at least tenfold if warming rises from 1.5°C to 3°C (medium confidence). (Figure SPM.3c, d, f) {2.4, 2.5, 3.4, 3.5, 12.3, 12.5, Table 12.6, 13.4, 13.10, 16.4, 16.6, CCP1.2, Figure CCP1.6; Figure CCP1.7, CCP5.3, CCP6.3, CCB PALEO}

SPM.B.4.2 Risks in physical water availability and water-related hazards will continue to increase by the mid- to long-term in all assessed regions, with greater risk at higher global warming levels (high confidence). At approximately 2°C global warming, snowmelt water availability for irrigation is projected to decline in some snowmelt dependent river basins by up to 20%, and global glacier mass loss of 18 ± 13% is projected to diminish water availability for agriculture, hydropower, and human settlements in the mid- to long-term, with these changes projected to double with 4°C global warming (medium confidence). In small islands, groundwater availability is threatened by climate change (high confidence). Changes to streamflow magnitude, timing and associated extremes are projected to adversely impact freshwater ecosystems in many watersheds by the mid- to long-term across all assessed scenarios (medium confidence). Projected increases in direct flood damages are higher by 1.4 to 2 times at 2°C and 2.5 to 3.9 times at 3°C compared to 1.5°C global warming without adaptation (medium confidence). At global warming of 4°C, approximately 10% of the global land area is projected to face increases in both extreme high and low river flows in the same location, with implications for planning for all water use sectors (medium confidence). Challenges for water management will be exacerbated in the near, mid and long term, depending on the magnitude, rate and regional details of future climate change and will be particularly challenging for regions with constrained resources for water management (high confidence). {2.3, Box 4.2, 4.4, 4.5, Figure 4.20, 15.3, CCB DISASTER, CCP5.3, SROCC 2.3}

SPM.B.4.3 Climate change will increasingly put pressure on food production and access, especially in vulnerable regions, undermining food security and nutrition (high confidence). Increases in frequency, intensity and severity of droughts, floods and heatwaves, and continued sea level rise will increase risks to food security (high confidence) in vulnerable regions from moderate to high between 1.5°C and 2°C global warming level, with no or low levels of adaptation (medium confidence). At 2°C or higher global warming level in the mid-term, food security risks due to climate change will be more severe, leading to malnutrition and micro-nutrient deficiencies, concentrated in Sub-Saharan Africa, South Asia, Central and South America and Small Islands (high confidence). Global warming will progressively weaken soil health and ecosystem

13 Numbers of species assessed are in the tens of thousands globally.
14 The term ‘very high risks of extinction’ is used here consistently with the IUCN categories and criteria and equates with ‘critically endangered’.
services such as pollination, increase pressure from pests and diseases, and reduce marine animal biomass, undermining food productivity in many regions on land and in the ocean (medium confidence). At 3°C or higher global warming level in the long term, areas exposed to climate-related hazards will expand substantially compared with 2°C or lower global warming level (high confidence), exacerbating regional disparity in food security risks (high confidence). (Figure SPM.3) {1.1, 3.3, CCB SLR, 4.5, 5.2, 5.4, 5.5, 5.8, 5.9, 5.12, CCB MOVING PLATE, 7.3, 8.3, 9.11, 13.5, 15.3, 16.5, 16.6}

SPM.B.4.4 Climate change and related extreme events will significantly increase ill health and premature deaths from the near- to long-term (high confidence). Globally, population exposure to heatwaves will continue to increase with additional warming, with strong geographical differences in heat-related mortality without additional adaptation (very high confidence). Climate-sensitive food-borne, water-borne, and vector-borne disease risks are projected to increase under all levels of warming without additional adaptation (high confidence). In particular, dengue risk will increase with longer seasons and a wider geographic distribution in Asia, Europe, Central and South America and sub-Saharan Africa, potentially putting additional billions of people at risk by the end of the century (high confidence). Mental health challenges, including anxiety and stress, are expected to increase under further global warming in all assessed regions, particularly for children, adolescents, elderly, and those with underlying health conditions (very high confidence). {4.5, 5.12, Box 5.10, 7.3, Fig 7.9, 8.4, 9.10, Fig 9.32, Fig 9.35, 10.4, Fig 10.11, 11.3, 12.3, Fig 12.5, Fig 12.6, 13.7, Fig 13.23, Fig 13.24, 14.5, 15.3, CCP6.2}

SPM.B.4.5 Climate change risks to cities, settlements and key infrastructure will rise rapidly in the mid- and long-term with further global warming, especially in places already exposed to high temperatures, along coastlines, or with high vulnerabilities (high confidence). Globally, population change in low-lying cities and settlements will lead to approximately a billion people projected to be at risk from coastal-specific climate hazards in the mid-term under all scenarios, including in Small Islands (high confidence). The population potentially exposed to a 100-year coastal flood is projected to increase by about 20% if global mean sea level rises by 0.15 m relative to 2020 levels; this exposed population doubles at a 0.75 m rise in mean sea level and triples at 1.4 m without population change and additional adaptation (medium confidence). Sea level rise poses an existential threat for some Small Islands and some low-lying coasts (medium confidence). By 2100 the value of global assets within the future 1-in-100 year coastal floodplains is projected to be between US$7.9 and US$12.7 trillion (2011 value) under RCP4.5, rising to between US$8.8 and US$14.2 trillion under RCP8.5 (medium confidence). Costs for maintenance and reconstruction of urban infrastructure, including building, transportation, and energy will increase with global warming level (medium confidence), the associated functional disruptions are projected to be substantial particularly for cities, settlements and infrastructure located on permafrost in cold regions and on coasts (high confidence). {6.2, 9.9, 10.4, 13.6, 13.10, 15.3, 16.5, CCP2.1, CCP2.2, CCP5.3, CCP6.2, CCB SLR, SROCC 2.3, SROCC CCB9}

SPM.B.4.6 Projected estimates of global aggregate net economic damages generally increase non-linearly with global warming levels (high confidence).35 The wide range of global estimates, and the lack of comparability between methodologies, does not allow for identification of a robust range of estimates (high confidence). The existence of higher estimates than assessed in AR5 indicates that global aggregate economic impacts could be higher than previous estimates (low confidence).36 Significant regional variation in aggregate economic damages from climate change is projected (high confidence) with estimated economic damages per capita for developing countries often higher as a fraction of income (high confidence). Economic damages, including both those represented and those not represented in economic markets, are projected to be lower at 1.5°C than at 3°C or higher global warming levels (high confidence). {4.4, 9.11, 11.5, 13.10, Box 14.6, 16.5, CWGB ECONOMICS}

SPM.B.4.7 In the mid- to long-term, displacement will increase with intensification of heavy precipitation and associated flooding, tropical cyclones, drought and, increasingly, sea level rise (high confidence). At progressive levels of warming, involuntary migration from regions with high exposure and low adaptive

35 The assessment found estimated rates of increase in projected global economic damages that were both greater than linear and less than linear as global warming level increases. There is evidence that some regions could benefit from low levels of warming (high confidence). [CWGB ECONOMICS]

36 Low confidence assigned due to the assessed lack of comparability and robustness of global aggregate economic damage estimates. [CWGB ECONOMICS]
Global and regional risks for increasing levels of global warming

(a) Global surface temperature change
Increase relative to the period 1850–1900

(b) Reasons for Concern (RFC)
Impact and risk assessments assuming low to no adaptation

(c) Impacts and risks to terrestrial and freshwater ecosystems

(d) Impacts and risks to ocean ecosystems

(e) Climate sensitive health outcomes under three adaptation scenarios

* Mortality projections include demographic trends but do not include future efforts to improve air quality that reduce ozone concentrations.
(f) Examples of regional key risks

Absence of risk diagrams does not imply absence of risks within a region. The development of synthetic diagrams for Small Islands, Asia and Central and South America was limited due to the paucity of adequately downscaled climate projections, with uncertainty in the direction of change, the diversity of climatologies and socioeconomic contexts across countries within a region, and the resulting few numbers of impact and risk projections for different warming levels.

The risks listed are of at least medium confidence level:

Small Islands
- Loss of terrestrial, marine and coastal biodiversity and ecosystem services
- Loss of lives and assets, risk to food security and economic disruption due to destruction of settlements and infrastructure
- Economic decline and livelihood failure of fisheries, agriculture, tourism and from biodiversity loss from traditional agroecosystems
- Reduced habitability of reef and non-reef islands leading to increased displacement
- Risk to water security in almost every small island

North America
- Climate-sensitive mental health outcomes, human mortality and morbidity due to increasing average temperature, weather and climate extremes, and compounded climate hazards
- Risk of degradation of marine, coastal and terrestrial ecosystems, including loss of biodiversity, function, and protective services
- Risk to freshwater resources with consequences for ecosystems, reduced surface water availability for irrigated agriculture, other human uses, and degraded water quality
- Risk to food and nutritional security through changes in agriculture, livestock, hunting, fisheries, and aquaculture productivity and access
- Risks to well-being, livelihoods and economic activities from cascading and compounding climate hazards, including risks to coastal cities, settlements and infrastructure from sea-level rise

Europe
- Risks to people, economies and infrastructures due to coastal and inland flooding
- Stress and mortality to people due to increasing temperatures and heat extremes
- Marine and terrestrial ecosystems disruptions
- Water scarcity to multiple interconnected sectors
- Losses in crop production, due to compound heat and dry conditions, and extreme weather

Central- and South America
- Risk to water security
- Severe health effects due to increasing epidemics, in particular vector-borne diseases
- Coral reef ecosystems degradation due to coral bleaching
- Risk to food security due to frequent/extreme droughts
- Damages to life and infrastructure due to floods, landslides, sea level rise, storm surges and coastal erosion

Australia
- Degradation of tropical shallow coral reefs and associated biodiversity and ecosystem service values
- Loss of human and natural systems in low-lying coastal areas due to sea-level rise
- Impact on livelihoods and incomes due to decline in agricultural production
- Increase in heat-related mortality and morbidity for people and wildlife
- Loss of alpine biodiversity in Australia due to less snow

Asia
- Urban infrastructure damage and impacts on human well-being and health due to flooding, especially in coastal cities and settlements
- Biodiversity loss and habitat shifts as well as associated disruptions in dependent human systems across freshwater, land, and ocean ecosystems
- More frequent, extensive coral bleaching and subsequent coral mortality induced by ocean warming and acidification, sea level rise, marine heat waves and resource extraction
- Decline in coastal fishery resources due to sea level rise, decrease in precipitation in some parts and increase in temperature
- Risk to food and water security due to increased temperature extremes, rainfall variability and drought

Africa
- Species extinction and reduction or irreversible loss of ecosystems and their services, including freshwater, land and ocean ecosystems
- Risk to food security, risk of malnutrition (micronutrient deficiency), and loss of livelihood due to reduced food production from crops, livestock and fisheries
- Risks to marine ecosystem health and livelihoods in coastal communities
- Increased human mortality and morbidity due to increased heat and infectious diseases (including vector-borne and diarrheal diseases)
- Reduced economic output and growth, and increased inequality and poverty rates
- Increased risk to water and energy security due to drought and heat

Figure SPM.3: Synthetic diagrams of global and sectoral assessments and examples of regional key risks. Diagrams show the change in the levels of impacts and risks assessed for global warming of 0–5°C global surface temperature change relative to pre-industrial period (1850–1900) over the range. (a) Global surface temperature changes in °C relative to 1850–1900. These changes were obtained by combining CMIP6 model simulations with observational constraints based on past simulated warming, as well as an updated assessment of equilibrium climate sensitivity (Box SPM.1). Changes relative to 1850–1900 based on 20-year averaging periods are calculated by adding 0.85°C (the observed global surface temperature increase from 1850–1900 to 1995–2014) to simulated changes relative to 1995–2014. Very likely ranges are shown for SSP1-2.6 and SSP3-
Climate change impacts and risks are becoming increasingly complex and more difficult to manage. Multiple climate hazards will occur simultaneously, and multiple climatic and non-climatic risks will interact, resulting in compounding overall risk and risks cascading across sectors and regions. Some responses to climate change result in new impacts and risks. (high confidence) {1.3, 2.4, Box 2.2, Box 9.5, 11.5, 13.5, 14.6, Box 15.1, CCP1.2, CCP2.2, CCB DISASTER, CCB INTERREG, CCB SRM, CCB COVID}
SPM.B.5.1 Concurrent and repeated climate hazards occur in all regions, increasing impacts and risks to health, ecosystems, infrastructure, livelihoods and food (high confidence). Multiple risks interact, generating new sources of vulnerability to climate hazards, and compounding overall risk (high confidence). Increasing concurrence of heat and drought events are causing crop production losses and tree mortality (high confidence). Above 1.5°C global warming increasing concurrent climate extremes will increase risk of simultaneous crop losses of maize in major food-producing regions, with this risk increasing further with higher global warming levels (medium confidence). Future sea level rise combined with storm surge and heavy rainfall will increase compound flood risks (high confidence). Risks to health and food production will be made more severe from the interaction of sudden food production losses from heat and drought, exacerbated by heat-induced labour productivity losses (high confidence). These interacting impacts will increase food prices, reduce household incomes, and lead to health risks of malnutrition and climate-related mortality with no or low levels of adaptation, especially in tropical regions (high confidence). Risks to food safety from climate change will further compound the risks to health by increasing food contamination of crops from mycotoxins and contamination of seafood from harmful algal blooms, mycotoxins, and chemical contaminants (high confidence). {5.2, 5.4, 5.8, 5.9, 5.11, 5.12, 7.2, 7.3, 9.8, 9.11, 10.4, 11.3, 11.5, 12.3, 13.5, 14.5, 15.3, Box 15.1, 16.6, CCP1.2, CCP6.2, Figure TS10C, WG1 SPM A.3.1, A.3.2 and C.2.7}

SPM.B.5.2 Adverse impacts from climate hazards and resulting risks are cascading across sectors and regions (high confidence), propagating along coasts and urban centres (medium confidence) and in mountain regions (high confidence). These hazards and cascading risks also trigger tipping points in sensitive ecosystems and in significantly and rapidly changing social-ecological systems impacted by ice melt, permafrost thaw and changing hydrology in polar regions (high confidence). Wildfires, in many regions, have affected ecosystems and species, people and their built assets, economic activity, and health (medium to high confidence). In cities and settlements, climate impacts to key infrastructure are leading to losses and damages across water and food systems, and affect economic activity, with impacts extending beyond the area directly impacted by the climate hazard (high confidence). In Amazonia, and in some mountain regions, cascading impacts from climatic (e.g., heat) and non-climatic stressors (e.g., land use change) will result in irreversible and severe losses of ecosystem services and biodiversity at 2°C global warming level and beyond (medium confidence). Unavoidable sea level rise will bring cascading and compounding impacts resulting in losses of coastal ecosystems and ecosystem services, groundwater salinisation, flooding and damages to coastal infrastructure that cascade into risks to livelihoods, settlements, health, well-being, food and water security, and cultural values in the near to long-term (high confidence). (Figure SPM.3) {2.5, 3.4, 3.5, Box 7.3, Box 8.7, Box 9.4, Box 11.1, 11.5, 12.3, 13.9, 14.6, 15.3, 16.5, 16.6, CCP1.2, CCP2.2, CCP5.2, CCP5.3, CCP6.2, CCP6.3, Box CCP6.1, Box CCP6.2, CCB EXTREMES, Figure TS.10, WGI SPM Figure SPM.8d}

SPM.B.5.3 Weather and climate extremes are causing economic and societal impacts across national boundaries through supply-chains, markets, and natural resource flows, with increasing transboundary risks projected across the water, energy and food sectors (high confidence). Supply chains that rely on specialized commodities and key infrastructure can be disrupted by weather and climate extreme events. Climate change causes the redistribution of marine fish stocks, increasing risk of transboundary management conflicts among fisheries users, and negatively affecting equitable distribution of food provisioning services as fish stocks shift from lower to higher latitude regions, thereby increasing the need for climate-informed transboundary management and cooperation (high confidence). Precipitation and water availability changes increases the risk of planned infrastructure projects, such as hydropower in some regions, having reduced productivity for food and energy sectors including across countries that share river basins (medium confidence). {Figure TS.10e-f, 3.4, 3.5, 4.5, 5.8, 5.13, 6.2, 9.4, Box 9.5,14.5, Box 14.5, Box 14.6, CCP5.3, CCB EXTREMES, CCB MOVING PLATE, CCB INTERREG, CCB DISASTER}

SPM B.5.4 Risks arise from some responses that are intended to reduce the risks of climate change, including risks from maladaptation and adverse side effects of some emission reduction and carbon dioxide removal measures (high confidence). Deployment of afforestation of naturally unforested land, or poorly implemented bioenergy, with or without carbon capture and storage, can compound climate-related risks to biodiversity, water and food security, and livelihoods, especially if implemented at large scales, especially in regions with insecure land tenure (high confidence). {Box 2.2, 4.1, 4.7, 5.13, Table 5.18, Box 9.3, Box 13.2, CCB NATURAL, CWGB BIOECONOMY}
SPM B.5.5 Solar radiation modification approaches, if they were to be implemented, introduce a widespread range of new risks to people and ecosystems, which are not well understood (high confidence). Solar radiation modification approaches have potential to offset warming and ameliorate some climate hazards, but substantial residual climate change or overcompensating change would occur at regional scales and seasonal timescales (high confidence). Large uncertainties and knowledge gaps are associated with the potential of solar radiation modification approaches to reduce climate change risks. Solar radiation modification would not stop atmospheric CO\textsubscript{2} concentrations from increasing or reduce resulting ocean acidification under continued anthropogenic emissions (high confidence). {XWGB SRM}

Impacts of Temporary Overshoot

SPM.B.6 If global warming transiently exceeds 1.5°C in the coming decades or later (overshoot)37, then many human and natural systems will face additional severe risks, compared to remaining below 1.5°C (high confidence). Depending on the magnitude and duration of overshoot, some impacts will cause release of additional greenhouse gases (medium confidence) and some will be irreversible, even if global warming is reduced (high confidence). (Figure SPM.3) \{2.5, 3.4, 12.3, 16.6, CCB SLR, CCB DEEP, Box SPM.1\}

SPM.B.6.1 While model-based assessments of the impacts of overshoot pathways are limited, observations and current understanding of processes permit assessment of impacts from overshoot. Additional warming, e.g., above 1.5°C during an overshoot period this century, will result in irreversible impacts on certain ecosystems with low resilience, such as polar, mountain, and coastal ecosystems, impacted by ice-sheet, glacier melt, or by accelerating and higher committed sea level rise (high confidence).38 Risks to human systems will increase, including those to infrastructure, low-lying coastal settlements, some ecosystem-based adaptation measures, and associated livelihoods (high confidence), cultural and spiritual values (medium confidence). Projected impacts are less severe with shorter duration and lower levels of overshoot (medium confidence). \{2.5, 3.4, 12.3, 13.2, 16.5, 16.6, CCP 1.2, CCP5.3, CCP6.1, CCP6.2, CCP2.2, CCB SLR, Box TS4, SROCC 2.3, SROCC 5.4, WG1 SPM B5 and C3\}

SPM.B.6.2 Risk of severe impacts increase with every additional increment of global warming during overshoot (high confidence). In high-carbon ecosystems (currently storing 3,000 to 4,000 GtC)39 such impacts are already observed and are projected to increase with every additional increment of global warming, such as increased wildfires, mass mortality of trees, drying of peatlands, and thawing of permafrost, weakening natural land carbon sinks and increasing releases of greenhouse gases (medium confidence). The resulting contribution to a potential amplification of global warming indicates that a return to a given global warming level or below would be more challenging (medium confidence). \{2.4, 2.5, CCP4.2, WG1 SPM B.4.3, SROCC 5.4\}

SPM.C: Adaptation Measures and Enabling Conditions

Adaptation, in response to current climate change, is reducing climate risks and vulnerability mostly via adjustment of existing systems. Many adaptation options exist and are used to help manage projected climate change impacts, but their implementation depends upon the capacity and effectiveness of governance and decision-making processes. These and other enabling conditions can also support Climate Resilient Development (Section D).

Current Adaptation and its Benefits

37 In this report, overshoot pathways exceed 1.5°C global warming and then return to that level, or below, after several decades.

38 Despite limited evidence specifically on the impacts of a temporary overshoot of 1.5°C, a much broader evidence base from process understanding and the impacts of higher global warming levels allows a high confidence statement on the irreversibility of some impacts that would be incurred following such an overshoot.

39 At the global scale, terrestrial ecosystems currently remove more carbon from the atmosphere (-3.4 ± 0.9 Gt yr-1) than they emit (+1.6 ± 0.7 Gt yr-1), a net sink of -1.9 ± 1.1 Gt yr-1. However, recent climate change has shifted some systems in some regions from being net carbon sinks to net carbon sources.
SPM.C.1 Progress in adaptation planning and implementation has been observed across all sectors and regions, generating multiple benefits (very high confidence). However, adaptation progress is unevenly distributed with observed adaptation gaps (high confidence). Many initiatives prioritize immediate and near-term climate risk reduction which reduces the opportunity for transformational adaptation (high confidence). {2.6, 5.14, 7.4, 10.4, 12.5, 13.11, 14.7, 16.3, 17.3, CCP5.2, CCP5.4}

SPM.C.1.1 Adaptation planning and implementation have continued to increase across all regions (very high confidence). Growing public and political awareness of climate impacts and risks has resulted in at least 170 countries and many cities including adaptation in their climate policies and planning processes (high confidence). Decision support tools and climate services are increasingly being used (very high confidence). Pilot projects and local experiments are being implemented in different sectors (high confidence). Adaptation can generate multiple additional benefits such as improving agricultural productivity, innovation, health and well-being, food security, livelihood, and biodiversity conservation as well as reduction of risks and damages (very high confidence). {1.4, CCB ADAPT, 2.6, CCB NATURE, 3.5, 3.6, 4.7, 4.8, 5.4, 5.6, 5.10, 6.4.2, 7.4, 8.5, 9.3, 9.6, 10.4, 12.5, 13.11, 15.5, 16.3, 17.2, 17.3, 17.5 CCP5.4}

SPM.C.1.2 Despite progress, adaptation gaps exist between current levels of adaptation and levels needed to respond to impacts and reduce climate risks (high confidence). Most observed adaptation is fragmented, small in scale, incremental, sector-specific, designed to respond to current impacts or near-term risks, and focused more on planning rather than implementation (high confidence). Observed adaptation is unequally distributed across regions (high confidence), and gaps are partially driven by widening disparities between the estimated costs of adaptation and documented finance allocated to adaptation (high confidence). The largest adaptation gaps exist among lower income population groups (high confidence). At current rates of adaptation planning and implementation the adaptation gap will continue to grow (high confidence). As adaptation options often have long implementation times, long-term planning and accelerated implementation, particularly in the next decade, is important to close adaptation gaps, recognising that constraints remain for some regions (high confidence). {1.1, 1.4, 5.6, 6.3, Figure 6.4, 7.4, 8.3, 10.4, 11.3, 11.7, 15.2, Box 13.1, 13.11, 15.5, Box16.1, Figure 16.4, Figure 16.5, 16.3, 16.5, 17.4, 18.2, CCP2.4, CCP5.4, CCB FINANCE, CCB SLR}

40 Adaptation gaps are defined as the difference between actually implemented adaptation and a societally set goal, determined largely by preferences related to tolerated climate change impacts and reflecting resource limitations and competing priorities.
Diverse feasible climate responses and adaptation options exist to respond to Representative Key Risks of climate change, with varying synergies with mitigation

Multidimensional feasibility and synergies with mitigation of climate responses and adaptation options relevant in the near-term, at global scale and up to 1.5°C of global warming

<table>
<thead>
<tr>
<th>System transitions</th>
<th>Climate responses and adaptation options</th>
<th>Climate responses and adaptation options</th>
<th>Potential feasibility</th>
<th>Synergies with mitigation</th>
<th>Observed relation with sectors and groups at risk</th>
<th>Relation with Sustainable Development Goals</th>
<th>Types of relation</th>
<th>Confidence level</th>
<th>Related Sustainable Development Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal socio-ecological systems</td>
<td>Coastal defence and hardening, Integrated coastal zone management</td>
<td>Forest-based adaptation², Sustainable aquaculture and fisheries, Agroforestry, Biodiversity management and ecosystem connectivity</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>+ With benefits</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Land and ocean ecosystems</td>
<td>Water use efficiency and water resource management</td>
<td>Improved crop management, Efficient livestock systems</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>+ With benefits</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Urban and infrastructure systems</td>
<td>Critical infrastructure, networks and services</td>
<td>Green infrastructure and ecosystem services, Sustainable land use and urban planning</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>+ With benefits</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Human health</td>
<td>Health and health systems adaptation</td>
<td>Livelihood diversification</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>+ With benefits</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Energy systems</td>
<td>Human migration⁶</td>
<td>Planned relocation and resettlement, Human migration⁶</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>+ With benefits</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Cross-sectoral</td>
<td>Disaster risk management, including Early Warning Systems, Social safety nets, Risk spreading and sharing</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>not assessed</td>
<td>+ With benefits</td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure SPM.4: (a) Climate responses and adaptation options, organized by System Transitions and Representative Key Risks (RKRs), are assessed for their multidimensional feasibility at global scale, in the near term and up to 1.5°C of global warming.
warming. As literature above 1.5°C is limited, feasibility at higher levels of warming may change, which is currently not possible to assess robustly. Climate responses and adaptation options at global scale are drawn from a set of options assessed in AR6 that have robust evidence across the feasibility dimensions. This figure shows the six feasibility dimensions (economic, technological, institutional, social, environmental and geophysical) that are used to calculate the potential feasibility of climate responses and adaptation options, along with their synergies with mitigation. For potential feasibility and feasibility dimensions, the figure shows high, medium, or low feasibility. Synergies with mitigation are identified as high, medium, and low. Insufficient evidence is denoted by a dash. {CCB FEASIB., Table SMCCB FEASIB.1; SR1.5 4.SM.4.3}

Figure SPM.4: (b) Climate responses and adaptation options, organized by System Transitions and Representative Key Risks, are assessed at global scale for their likely ability to reduce risks for ecosystems and social groups at risk, as well as their relation with the 17 Sustainable Development Goals (SDGs). Climate responses and adaptation options are assessed for observed benefits (+) to ecosystems and their services, ethnic groups, gender equity, and low-income groups, or observed dis-benefits (-) for these systems and groups. Where there is highly diverging evidence of benefits/ dis-benefits across the scientific literature, e.g., based on differences between regions, it is shown as not clear or mixed (*). Insufficient evidence is shown by a dash. The relation with the SDGs is assessed as having benefits (+), dis-benefits (-) or not clear or mixed (*) based on the impacts of the climate response and adaptation option on each SDG. Areas not coloured indicate there is no evidence of a relation or no interaction with the respective SDG. The climate responses and adaptation options are drawn from two assessments. For comparability of climate responses and adaptation options see Table SM17.5. {17.2, 17.5; CCB FEASIB}

Future Adaptation Options and their Feasibility

SPM.C.2 There are feasible and effective adaptation options which can reduce risks to people and nature. The feasibility of implementing adaptation options in the near-term differs across sectors and regions (very high confidence). The effectiveness of adaptation to reduce climate risk is documented for specific contexts, sectors and regions (high confidence) and will decrease with increasing warming (high confidence). Integrated, multi-sectoral solutions that address social inequities, differentiate responses based on climate risk and cut across systems, increase the feasibility and effectiveness of adaptation in multiple sectors (high confidence). (Figure SPM.4) {Figure TS.6e, 1.4, 3.6, 4.7, 5.12, 6.3, 7.4, 11.3, 11.7, 13.2, 15.5, 17.6, CCB FEASIB, CCP2.3}

Land, Ocean and Ecosystems Transition

SPM.C.2.1 Adaptation to water-related risks and impacts make up the majority of all documented adaptation (high confidence). For inland flooding, combinations of non-structural measures like early warning systems and structural measures like levees have reduced loss of lives (medium confidence). Enhancing natural water retention such as by restoring wetlands and rivers, land use planning such as no build zones or upstream forest management, can further reduce flood risk (medium confidence). On-farm water management, water storage, soil moisture conservation and irrigation are some of the most common adaptation responses and provide economic, institutional or ecological benefits and reduce vulnerability (high confidence). Irrigation is effective in reducing drought risk and climate impacts in many regions and has several livelihood benefits, but needs appropriate management to avoid potential adverse outcomes, which can include accelerated depletion of groundwater and other water sources and increased soil salinization (medium confidence). Large scale irrigation can also alter local to regional temperature and precipitation patterns (high confidence), including both alleviating and exacerbating temperature extremes (medium confidence). The effectiveness of most water-related adaptation options to reduce projected risks declines with increasing warming (high confidence). {4.1, 4.2, 6.2, 6.4, 7.6, 11.3, 11.8, 13.2, 15.4, 15.5, 17.6, CCB FEASIB, CCP2.3}

In this report, feasibility refers to the potential for a mitigation or adaptation option to be implemented. Factors influencing feasibility are context-dependent, temporally dynamic, and may vary between different groups and actors. Feasibility depends on geophysical, environmental-ecological, technological, economic, socio-cultural and institutional factors that enable or constrain the implementation of an option. The feasibility of options may change when different options are combined and increase when enabling conditions are strengthened.

Effectiveness refers to the extent to which an adaptation option is anticipated or observed to reduce climate-related risk.
SPM.C.2.2 Effective adaptation options, together with supportive public policies enhance food availability and stability and reduce climate risk for food systems while increasing their sustainability (medium confidence). Effective options include cultivar improvements, agroforestry, community-based adaptation, farm and landscape diversification, and urban agriculture (high confidence). Institutional feasibility, adaptation limits of crops and cost effectiveness also influence the effectiveness of the adaptation options (limited evidence, medium agreement). Agroecological principles and practices, ecosystem-based management in fisheries and aquaculture, and other approaches that work with natural processes support food security, nutrition, health and well-being, livelihoods and biodiversity, sustainability and ecosystem services (high confidence). These services include pest control, pollination, buffering of temperature extremes, and carbon sequestration and storage (high confidence). Trade-offs and barriers associated with such approaches include costs of establishment, access to inputs and viable markets, new knowledge and management (high confidence) and their potential effectiveness varies by socio-economic context, ecosystem zone, species combinations and institutional support (medium confidence). Integrated, multi-sectoral solutions that address social inequities and differentiate responses based on climate risk and local situation will enhance food security and nutrition (high confidence). Adaptation strategies which reduce food loss and waste or support balanced diets\(^3\) (as described in the IPCC Special Report on Climate Change and Land) contribute to nutrition, health, biodiversity and other environmental benefits (high confidence). \{2.6, 4.7, 4.6, Box 4.3, 5.4, 5.5, 5.6, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 7.4, Box 5.10, Box 5.13, 6.3, 10.4, 12.5, 13.5, 13.10, 14.5, CWGB BIOECONOMY, CCB MOVING PLATE, CCB NATURAL, CCB FEASIB, CCB5.4, CCB HEALTH\}

SPM.C.2.3 Adaptation for natural forests\(^4\) includes conservation, protection and restoration measures. In managed forests\(^5\), adaptation options include sustainable forest management, diversifying and adjusting tree species compositions to build resilience, and managing increased risks from pests and diseases and wildfires. Restoring natural forests and drained peatlands and improving sustainability of managed forests, generally enhances the resilience of carbon stocks and sinks. Cooperation, and inclusive decision making, with local communities and Indigenous Peoples, as well as recognition of inherent rights of Indigenous Peoples, is integral to successful forest adaptation in many areas. (high confidence) \{2.6, Box 2.2, CCB NATURAL, CCB FEASIB, CCB INDIG, 5.6, 5.13, 11.4, 12.5, 13.5, Box 14.1, Box 14.2, Table 5.23, Box CCP7.1, CCP7.5\}.

SPM.C.2.4 Conservation, protection and restoration of terrestrial, freshwater, coastal and ocean ecosystems, together with targeted management to adapt to unavoidable impacts of climate change, reduces the vulnerability of biodiversity to climate change (high confidence). The resilience of species, biological communities and ecosystem processes increases with size of natural area, by restoration of degraded areas and by reducing non-climatic stressors (high confidence). To be effective, conservation and restoration actions will increasingly need to be responsive, as appropriate, to ongoing changes at various scales, and plan for future changes in ecosystem structure, community composition and species’ distributions, especially as 1.5°C global warming is approached and even more so if it is exceeded (high confidence). Adaptation options, where circumstances allow, include facilitating the movement of species to new ecologically appropriate locations, particularly through increasing connectivity between conserved or protected areas, targeted intensive management for vulnerable species and protecting refugial areas where species can survive locally (medium confidence). \{2.3, Figure 2.1, 2.6, Table 2.6, 2.6, 3.6, Box 3.4, 4.6, Box 11.2, 12.3, 12.5, 3.3, 13.4, 14.7, Box 4.6, CCP5.4, CCB FEASIB\}

SPM.C.2.5 Effective Ecosystem-based Adaptation\(^6\) reduces a range of climate change risks to people, biodiversity and ecosystem services with multiple co-benefits (high confidence). Ecosystem-based Adaptation

\(^3\) In this report, the term natural forests describes those which are subject to little or no direct human intervention, whereas the term managed forests describes those where planting or other management activities take place, including those managed for commodity production.

\(^4\) Ecosystem based Adaptation (EbA) is recognised internationally under the Convention on Biological Diversity (CBD14/5). A related concept is Nature-based Solutions (NbS), which includes a broader range of approaches with safeguards, including those that contribute to adaptation and mitigation. The term ‘Nature-based Solutions’ is widely but not universally used in the scientific literature. The term is the subject of ongoing debate, with concerns that it may lead to the misunderstanding that NbS on its own can provide a global solution to climate change.
is vulnerable to climate change impacts, with effectiveness declining with increasing global warming (high confidence). Urban greening using trees and other vegetation can provide local cooling (very high confidence). Natural river systems, wetlands and upstream forest ecosystems reduce flood risk by storing water and slowing water flow, in most circumstances (high confidence). Coastal wetlands protect against coastal erosion and flooding associated with storms and sea level rise where sufficient space and adequate habitats are available until rates of sea level rise exceeds natural adaptive capacity to build sediment (very high confidence). \{2.4, 2.5, 2.6, Table 2.7, 3.4, 3.5, 3.6, Figure 3.26, 4.6, Box 4.6, Box 4.7, 5.5, 5.14, Box 5.11, 6.3, 6.4, Figure 6.6, 7.4, 8.5, 8.6, 9.6, 9.8, 9.9, 10.2, 11.3, 12.5, 13.3, 13.4, 13.5, 14.5, Box 14.7, 16.3, 18.3, CCB HEALTH, CCB NATURAL, CCB MOVING PLATE, CCB FEASIB.3, CWGB BIOECONOMY, CCP5.4\}

Urban, Rural and Infrastructure Transition

SPM.C.2.6 Considering climate change impacts and risks in the design and planning of urban and rural settlements and infrastructure is critical for resilience and enhancing human well-being (high confidence). The urgent provision of basic services, infrastructure, livelihood diversification and employment, strengthening of local and regional food systems and community-based adaptation enhance lives and livelihoods, particularly of low-income and marginalised groups (high confidence). Inclusive, integrated and long-term planning at local, municipal, sub-national and national scales, together with effective regulation and monitoring systems and financial and technological resources and capabilities foster urban and rural system transition (high confidence). Effective partnerships between governments, civil society, and private sector organizations, across scales provide infrastructure and services in ways that enhance the adaptive capacity of vulnerable people (medium to high confidence). \{5.12, 5.13, 5.14, Box 6.3, 6.3, 6.4, Box 6.6, Table 6.6, 7.4, 12.5, 13.6, 14.5, Box14.4, Box17.4, CCB FEASIB, CCP2.3, CCP2.4, CCP5.4\}

SPM.C.2.7 An increasing number of adaptation responses exist for urban systems, but their feasibility and effectiveness is constrained by institutional, financial, and technological access and capacity, and depends on coordinated and contextually appropriate responses across physical, natural and social infrastructure (high confidence). Globally, more financing is directed at physical infrastructure than natural and social infrastructure (medium confidence) and there is limited evidence of investment in the informal settlements hosting the most vulnerable urban residents (medium to high confidence). Ecosystem-based adaptation (e.g., urban agriculture and forestry, river restoration) has increasingly been applied in urban areas (high confidence). Combined ecosystem-based and structural adaptation responses are being developed, and there is growing evidence of their potential to reduce adaptation costs and contribute to flood control, sanitation, water resources management, landslide prevention and coastal protection (medium confidence). \{3.6, Box 4.6, 5.12, 6.3, 6.4, Table 6.8, 7.4, 9.7, 9.9, 10.4, Table 10.3, 11.3, 11.7, Box 11.6, 12.5, 13.2, 13.3, 13.6, 14.5, 15.5, 17.2, Box 17.4, CCB FEASIB, CCP2.3, CCP 3.2, CCP5.4, CCB SLR, SROCC ES\}

SPM C.2.8: Sea level rise poses a distinctive and severe adaptation challenge as it implies dealing with slow onset changes and increased frequency and magnitude of extreme sea level events which will escalate in the coming decades (high confidence). Such adaptation challenges would occur much earlier under high rates of sea level rise, in particular if low-likelihood, high impact outcomes associated with collapsing ice sheets occur (high confidence). Responses to ongoing sea level rise and land subsidence in low-lying coastal cities and settlements and small islands include protection, accommodation, advance and planned relocation (high confidence)45. These responses are more effective if combined and/or sequenced, planned well ahead, aligned with sociocultural values and development priorities, and underpinned by inclusive community engagement processes (high confidence). \{CCB SLR, CCP2.3, 6.2, 10.4, 11.7, Box 11.6, 13.2.2, 14.5.9.2, 15.5, SROCC ES: C3.2, WGI SPM B5, C3\}

SPM.C.2.9 Approximately 3.4 billion people globally live in rural areas around the world, and many are highly vulnerable to climate change. Integrating climate adaptation into social protection programs, including cash transfers and public works programmes, is highly feasible and increases resilience to climate change, especially when supported by basic services and infrastructure. Social safety nets are increasingly being reconfigured to build adaptive capacities of the most vulnerable in rural and also urban communities. Social

45 The term ‘response’ is used here instead of adaptation because some responses, such as retreat, may or may not be considered to be adaptation.
safety nets that support climate change adaptation have strong co-benefits with development goals such as education, poverty alleviation, gender inclusion and food security. *(high confidence)* {5.14, 9.4, 9.10, 9.11, 12.5, 14.5, CCB GENDER, CCB FEASIB, CCP5.4}

Energy System Transition

SPM.C.2.10 Within energy system transitions, the most feasible adaptation options support infrastructure resilience, reliable power systems and efficient water use for existing and new energy generation systems *(very high confidence)*. Energy generation diversification, including with renewable energy resources and generation that can be decentralised depending on context (e.g., wind, solar, small scale hydropower) and demand side management (e.g., storage, and energy efficiency improvements) can reduce vulnerabilities to climate change, especially in rural populations *(high confidence)*. Adaptations for hydropower and thermo-electric power generation are effective in most regions up to 1.5°C to 2°C, with decreasing effectiveness at higher levels of warming *(medium confidence)*. Climate responsive energy markets, updated design standards on energy assets according to current and projected climate change, smart-grid technologies, robust transmission systems and improved capacity to respond to supply deficits have high feasibility in the medium- to long-term, with mitigation co-benefits *(very high confidence)*. *(4.6, 4.7, Figure 4.28, Figure 4.29, 10.4, Table 11.8, Figure 13.19, Figure 13.16, 13.6, 18.3, CCB FEASIB, CWGB BIOECONOMY, CCP5.2, CCP5.4)*

Cross-cutting Options

SPM.C.2.11 Strengthening the climate resiliency of health systems will protect and promote human health and wellbeing *(high confidence)*. There are multiple opportunities for targeted investments and finance to protect against exposure to climate hazards, particularly for those at highest risk. Heat Health Action Plans that include early warning and response systems are effective adaptation options for extreme heat *(high confidence)*. Effective adaptation options for water-borne and food-borne diseases include improving access to potable water, reducing exposure of water and sanitation systems to flooding and extreme weather events, and improved early warning systems *(very high confidence)*. For vector-borne diseases, effective adaptation options include surveillance, early warning systems, and vaccine development *(very high confidence)*. Effective adaptation options for reducing mental health risks under climate change include improving surveillance, access to mental health care, and monitoring of psychosocial impacts from extreme weather events *(high confidence)*. Health and well-being would benefit from integrated adaptation approaches that mainstream health into food, livelihoods, social protection, infrastructure, water and sanitation policies requiring collaboration and coordination at all scales of governance *(very high confidence)*. *(5.12, 6.3, 7.4, 9.10, Box 9.7, 11.3, 12.5, 13.7, 14.5, CCB FEASIB, CCB ILLNESS, CCB COVID)*.

SPM.C.2.12 Increasing adaptive capacities minimises the negative impacts of climate-related displacement and involuntary migration for migrants and sending and receiving areas *(high confidence)*. This improves the degree of choice under which migration decisions are made, ensuring safe and orderly movements of people within and between countries *(high confidence)*. Some development reduces underlying vulnerabilities associated with conflict, and adaptation contributes by reducing the impacts of climate change on climate sensitive drivers of conflict *(high confidence)*. Risks to peace are reduced, for example, by supporting people in climate-sensitive economic activities *(medium confidence)* and advancing women’s empowerment *(high confidence)*. *(7.4, 12.5, CCB MIGRATE, Box 9.8, Box 10.2, CCB FEASIB)*

SPM.C.2.13 There are a range of adaptation options, such as disaster risk management, early warning systems, climate services and risk spreading and sharing that have broad applicability across sectors and provide greater benefits to other adaptation options when combined *(high confidence)*. For example, climate services that are inclusive of different users and providers can improve agricultural practices, inform better water use and efficiency, and enable resilient infrastructure planning *(high confidence)*. *(2.6, 3.6, 4.7, 5.4, 5.5, 5.6, 5.8, 5.9, 5.12, 5.14, 9.4, 9.8, 10.4, 12.5, 13.11, CCB MOVING PLATE, CCB FEASIB, CCP5.4)*

Limits to Adaptation

SPM.C.3 Soft limits to some human adaptation have been reached, but can be overcome by addressing a range of constraints, primarily financial, governance, institutional and policy constraints *(high confidence)*. Hard
limits to adaptation have been reached in some ecosystems (high confidence). With increasing global warming, losses and damages will increase and additional human and natural systems will reach adaptation limits (high confidence). {Figure TS.7, 1.4, 2.4, 2.5, 2.6, CCB SLR, 3.4, 3.6, 4.7, Figure 4.30, 5.5, Table 8.6, Box 10.7, 11.7, Table 11.16, 12.5 13.2, 13.5, 13.6, 13.10, 13.11, Figure 13.21, 14.5, 15.6, 16.4, Figure 16.8, Table 16.3, Table 16.4, CCP1.2, CCP1.3, CCP2.3, CCP3.3, CCP5.2, CCP5.4, CCP6.3, CCP7.3}

SPM.C.3.1 Soft limits to some human adaptation have been reached, but can be overcome by addressing a range of constraints, which primarily consist of financial, governance, institutional and policy constraints (high confidence). For example, individuals and households in low lying coastal areas in Australasia and Small Islands and smallholder farmers in Central and South America, Africa, Europe and Asia have reached soft limits (medium confidence). Inequity and poverty also constrain adaptation, leading to soft limits and resulting in disproportionate exposure and impacts for most vulnerable groups (high confidence). Lack of climate literacy46 at all levels and limited availability of information and data pose further constraints to adaptation planning and implementation (medium confidence). {1.4, 4.7, 5.4, Table 8.6, 8.4, 9.1, 9.4, 9.5, 9.8, 11.7, 12.5 13.5, 15.3, 15.5, 15.6, 16.4, Figure 16.8, 16.4, Box 16.1, CCP5.2, CCP5.4, CCP6.3}

SPM.C.3.2 Financial constraints are important determinants of soft limits to adaptation across sectors and all regions (high confidence). Although global tracked climate finance has shown an upward trend since AR5, current global financial flows for adaptation, including from public and private finance sources, are insufficient for and constrain implementation of adaptation options especially in developing countries (high confidence). The overwhelming majority of global tracked climate finance was targeted to mitigation while a small proportion was targeted to adaptation (very high confidence). Adaptation finance has come predominantly from public sources (very high confidence). Adverse climate impacts can reduce the availability of financial resources by incurring losses and damages and through impeding national economic growth, thereby further increasing financial constraints for adaptation, particularly for developing and least developed countries (medium confidence). {1.4, 2.6, 3.6, 4.7, Figure 4.30, 5.14, 7.4, Table 8.6, 8.4, 9.4, 9.9, 9.11, 10.5, 12.5, 13.3, 13.11, Box 14.4, 15.6, 16.2, 16.4, Figure 16.8, Table 16.4, 17.4, 18.1, CCB FINANCE, CCP2.4, CCP5.4, CCP6.3, Figure TS 7}

SPM.C.3.3 Many natural systems are near the hard limits of their natural adaptation capacity and additional systems will reach limits with increasing global warming (high confidence). Ecosystems already reaching or surpassing hard adaptation limits include some warm water coral reefs, some coastal wetlands, some rainforests, and some polar and mountain ecosystems (high confidence). Above 1.5°C global warming level, some ecosystem-based adaptation measures will lose their effectiveness in providing benefits to people as these ecosystems will reach hard adaptation limits (high confidence). {1.4, 2.4, 2.6, 3.4, 3.6, CCB SLR, 9.6, Box11.2, 13.4, 14.5, 15.5, 16.4, 16.6, 17.2, CCP1.2, CCP5.2, CCP6.3, CCP7.3, Figure SPM.4}

SPM.C.3.4 In human systems, some coastal settlements face soft adaptation limits due to technical and financial difficulties of implementing coastal protection (high confidence). Above 1.5°C global warming level, limited freshwater resources pose potential hard limits for Small Islands and for regions dependent on glacier and snow-melt (medium confidence). By 2°C global warming level, soft limits are projected for multiple staple crops in many growing areas, particularly in tropical regions (high confidence). By 3°C global warming level, soft limits are projected for some water management measures for many regions, with hard limits projected for parts of Europe (medium confidence). Transitioning from incremental to transformational adaptation can help overcome soft adaptation limits (high confidence). {1.4, 4.7, 5.4, 5.8, 7.2, 7.3, 8.4, Table 8.6, 9.8, 10.4, 12.5, 13.2, 13.6, 16.4, 17.2, CCB SLR, CCP1.3. Box CCP1.1, CCP2.3, CCP3.3, CCP4.4, CCP5.3}

SPM.C.3.5 Adaptation does not prevent all losses and damages, even with effective adaptation and before reaching soft and hard limits. Losses and damages are unequally distributed across systems, regions and sectors and are not comprehensively addressed by current financial, governance and institutional arrangements, particularly in vulnerable developing countries. With increasing global warming, losses and damages increase and become increasingly difficult to avoid, while strongly concentrated among the poorest vulnerable
Avoiding Maladaptation

SPM.C.4 There is increased evidence of maladaptation across many sectors and regions since the AR5. Maladaptive responses to climate change can create lock-ins of vulnerability, exposure and risks that are difficult and expensive to change and exacerbate existing inequalities. Maladaptation can be avoided by flexible, multi-sectoral, inclusive and long-term planning and implementation of adaptation actions with benefits to many sectors and systems. (high confidence) {1.3, 1.4, 2.6, Box 2.2, 3.2, 3.6, Box 4.3, Box 4.5, 4.6, 4.7, Figure 4.29, 5.6, 5.13, 8.2, 8.3, 8.4, 8.6, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, Box 9.5, Box 9.8, Box 9.9, Box 11.6, 13.11, 13.3, 13.4, 13.5, 14.5, 15.5, 16.3, 17.3, 17.4, 17.6, 17.2, 17.5, CCP5.4, CCB SLR, CCB DEEP, CWGB BIOECONOMY, CCP2.3, CCP2.3}

SPM.C.4.1 Actions that focus on sectors and risks in isolation and on short-term gains often lead to maladaptation if long-term impacts of the adaptation option and long-term adaptation commitment are not taken into account (high confidence). The implementation of these maladaptive actions can result in infrastructure and institutions that are inflexible and/or expensive to change (high confidence). For example, seawalls effectively reduce impacts to people and assets in the short-term but can also result in lock-ins and increase exposure to climate risks in the long-term unless they are integrated into a long-term adaptive plan (high confidence). Adaptation integrated with development reduces lock-ins and creates opportunities (e.g., infrastructure upgrading) (medium confidence). {1.4, 3.4, 3.6, 10.4, 11.7, Box 11.6, 13.2, 17.2, 17.5, 17.6, CCP2.3, CCB SLR, CCB DEEP}

SPM.C.4.2 Biodiversity and ecosystem resilience to climate change are decreased by maladaptive actions, which also constrain ecosystem services. Examples of these maladaptive actions for ecosystems include fire suppression in naturally fire-adapted ecosystems or hard defences against flooding. These actions reduce space for natural processes and represent a severe form of maladaptation for the ecosystems they degrade, replace or fragment, thereby reducing their resilience to climate change and the ability to provide ecosystem services for adaptation. Considering biodiversity and autonomous adaptation in long-term planning processes reduces the risk of maladaptation. (high confidence) {2.4, 2.6, Table 2.7, 3.4, 3.6, 4.7, 5.6, 5.13, Table 5.21, 5.13, Box 13.2, 17.2, 17.5, Table 5.23, Box 11.2, 13.2, CCP5.4}

SPM.C.4.3 Maladaptation especially affects marginalised and vulnerable groups adversely (e.g., Indigenous Peoples, ethnic minorities, low-income households, informal settlements), reinforcing and entrenching existing inequities. Adaptation planning and implementation that do not consider adverse outcomes for different groups can lead to maladaptation, increasing exposure to risks, marginalising people from certain socio-economic or livelihood groups, and exacerbating inequity. Inclusive planning initiatives informed by cultural values, Indigenous knowledge, local knowledge, and scientific knowledge can help prevent maladaptation. (high confidence) (Figure SPM.4) {2.6, 3.6, 4.3, 4.6, 4.8, 5.12, 5.13, 5.14, 6.1, Box 7.1, 8.4, 11.4, 12.5, Box 13.2, 14.4, Box 14.1, 17.2, 17.5, 18.2, 17.2, CCP2.4}

SPM.C.4.4 To minimize maladaptation, multi-sectoral, multi-actor and inclusive planning with flexible pathways encourages low-regret and timely actions that keep options open, ensure benefits in multiple sectors and systems and indicate the available solution space for adapting to long-term climate change (very high confidence). Maladaptation is also minimized by planning that accounts for the time it takes to adapt (high confidence), the uncertainty about the rate and magnitude of climate risk (medium confidence) and a wide range of potentially adverse consequences of adaptation actions (high confidence). {1.4, 3.6, 5.12, 5.13, 5.14, 11.6, 11.7, 17.3, 17.6, CCP2.3, CCP2.4, CCB SLR, CCB DEEP; CCP5.4}

47 From AR5, an option that would generate net social and/or economic benefits under current climate change and a range of future climate change scenarios, and represent one example of robust strategies.
Enabling Conditions

SPM.C.5 Enabling conditions are key for implementing, accelerating and sustaining adaptation in human systems and ecosystems. These include political commitment and follow-through, institutional frameworks, policies and instruments with clear goals and priorities, enhanced knowledge on impacts and solutions, mobilization of and access to adequate financial resources, monitoring and evaluation, and inclusive governance processes. (*high confidence*) {1.4, 2.6, 3.6, 4.8, 6.4, 7.4, 8.5, 9.4, 10.5, 11.4, 11.7, 12.5, 13.11, 14.7, 15.6, 17.4, 18.4, CCB INDIG, CCB FINANCE, CCP2.4, CCP5.4}

SPM.C.5.1 Political commitment and follow-through across all levels of government accelerate the implementation of adaptation actions (*high confidence*). Implementing actions can require large upfront investments of human, financial and technological resources (*high confidence*), whilst some benefits could only become visible in the next decade or beyond (*medium confidence*). Accelerating commitment and follow-through is promoted by rising public awareness, building business cases for adaptation, accountability and transparency mechanisms, monitoring and evaluation of adaptation progress, social movements, and climate-related litigation in some regions (*medium confidence*). {3.6, 4.8, 5.8, 6.4, 8.5, 9.4, 11.7, 12.5, 13.11, 17.4, 17.5, 18.4, CCB COVID, CCP2.4}

SPM.C.5.2 Institutional frameworks, policies and instruments that set clear adaptation goals and define responsibilities and commitments and that are coordinated amongst actors and governance levels, strengthen and sustain adaptation actions (*very high confidence*). Sustained adaptation actions are strengthened by mainstreaming adaptation into institutional budget and policy planning cycles, statutory planning, monitoring and evaluation frameworks and into recovery efforts from disaster events (*high confidence*). Instruments that incorporate adaptation such as policy and legal frameworks, behavioural incentives, and economic instruments that address market failures, such as climate risk disclosure, inclusive and deliberative processes strengthen adaptation actions by public and private actors (*medium confidence*). {1.4, 3.6, 4.8, 5.14, 6.3, 6.4, 7.4, 9.4, 10.4, 11.7, Box 11.6, Table 11.17, 13.10, 13.11, 14.7, 15.6, 17.3, 17.4, 17.5, 17.6, 18.4, CCB DEEP, CCP2.4, CCP5.4, CCP6.3}

SPM.C.5.3 Enhancing knowledge on risks, impacts, and their consequences, and available adaptation options promotes societal and policy responses (*high confidence*). A wide range of top-down, bottom-up and co-produced processes and sources can deepen climate knowledge and sharing, including capacity building at all scales, educational and information programmes, using the arts, participatory modelling and climate services, Indigenous knowledge and local knowledge and citizen science (*high confidence*). These measures can facilitate awareness, heighten risk perception and influence behaviours (*high confidence*). {1.3, 3.6, 4.8, 5.9, 5.14, 6.4, Table 6.8, 7.4, 9.4, 10.5, 11.1, 11.7, 12.5, 13.9, 13.11, 14.3, 15.6, 15.6, 17.4, 18.4, CCB INDIG, CCP2.4.1).

SPMC.4 With adaptation finance needs estimated to be higher than those presented in AR5, enhanced mobilization of and access to financial resources are essential for implementation of adaptation and to reduce adaptation gaps (*high confidence*). Building capacity and removing some barriers to accessing finance is fundamental to accelerate adaptation, especially for vulnerable groups, regions and sectors (*high confidence*). Public and private finance instruments include inter alia grants, guarantee, equity, concessional debt, market debt, and internal budget allocation as well as savings in households and insurance. Public finance is an important enabler of adaptation (*high confidence*). Public mechanisms and finance can leverage private sector finance for adaptation by addressing real and perceived regulatory, cost and market barriers, for example via public-private partnerships (*high confidence*). Financial and technological resources enable effective and ongoing implementation of adaptation, especially when supported by institutions with a strong understanding of adaptation needs and capacity (*high confidence*). {4.8, 5.14, 6.4, Table 6.10, 7.4, 9.4, Table 11.17, 12.5, 13.11, 15.6, 17.4, 18.4, BOX 18.9, CCP5.4, CCB FINANCE}

SPM.C.5.5 Monitoring and evaluation (M&E) of adaptation are critical for tracking progress and enabling effective adaptation (*high confidence*). M&E implementation is currently limited (*high confidence*) but has increased since AR5 at local and national levels. Although most of the monitoring of adaptation is focused towards planning and implementation, the monitoring of outcomes is critical for tracking the effectiveness and
progress of adaptation (high confidence). M&E facilitates learning on successful and effective adaptation measures, and signals when and where additional action may be needed. M&E systems are most effective when supported by capacities and resources and embedded in enabling governance systems (high confidence). \{1.4, 2.6, 6.4, 7.4, 11.7, 11.8, 13.2, 13.11, 17.5, 18.4, CCB PROGRESS, CCB NATURAL, CCB ILLNESS, CCB DEEP, CCP2.4\}.

SPM.C.5.6 Inclusive governance that prioritises equity and justice in adaptation planning and implementation leads to more effective and sustainable adaptation outcomes (high confidence). Vulnerabilities and climate risks are often reduced through carefully designed and implemented laws, policies, processes, and interventions that address context specific inequities such as based on gender, ethnicity, disability, age, location and income (high confidence). These approaches, which include multi-stakeholder co-learning platforms, transboundary collaborations, community-based adaptation and participatory scenario planning, focus on capacity-building, and meaningful participation of the most vulnerable and marginalised groups, and their access to key resources to adapt (high confidence). \{1.4, 2.6, 3.6, 4.8, 5.4, 5.8, 5.9, 5.13, 6.4, 7.4, 8.5, 11.8, 12.5, 13.11, 14.7, 15.5, 15.7, 17.3, 17.5, 18.4, CCB HEALTH, CCB GENDER, CCB INDIG, CCP2.4, CCP5.4, CCP6.4\}

SPM.D: Climate Resilient Development

Climate Resilient Development integrates adaptation measures and their enabling conditions (Section C) with mitigation to advance sustainable development for all. Climate resilient development involves questions of equity and system transitions in land, ocean and ecosystems; urban and infrastructure; energy; industry; and society and includes adaptations for human, ecosystem and planetary health. Pursuing climate resilient development focuses on both where people and ecosystems are co-located as well as the protection and maintenance of ecosystem function at the planetary scale. Pathways for advancing climate resilient development are development trajectories that successfully integrate mitigation and adaptation actions to advance sustainable development. Climate resilient development pathways may be temporarily coincident with any RCP and SSP scenario used throughout AR6, but do not follow any particular scenario in all places and over all time.

Conditions for Climate Resilient Development

SPM.D.1 Evidence of observed impacts, projected risks, levels and trends in vulnerability, and adaptation limits, demonstrate that worldwide climate resilient development action is more urgent than previously assessed in AR5. Comprehensive, effective, and innovative responses can harness synergies and reduce trade-offs between adaptation and mitigation to advance sustainable development. (very high confidence) \{2.6, 3.4, 3.6, 4.2, 4.6, 7.2, 7.4, 8.3, 8.4, 9.3, 10.6, 13.3, 13.8, 13.10, 14.7, 17.2, 18.3, Figure 18.1, Table 18.5, Box 18.1\}

SPM.D.1.1 There is a rapidly narrowing window of opportunity to enable climate resilient development. Multiple climate resilient development pathways are still possible by which communities, the private sector, governments, nations and the world can pursue climate resilient development – each involving and resulting from different societal choices influenced by different contexts and opportunities and constraints on system transitions. Climate resilient development pathways are progressively constrained by every increment of warming, in particular beyond 1.5°C, social and economic inequalities, the balance between adaptation and mitigation varying by national, regional and local circumstances and geographies, according to capabilities including resources, vulnerability, culture and values, past development choices leading to past emissions and future warming scenarios, bounding the climate resilient development pathways remaining, and the ways in which development trajectories are shaped by equity, and social and climate justice. (very high confidence) \{2.6, 4.7, 4.8, 5.14, 6.4, 7.4, 8.3, 9.4, 9.3, 9.4, 9.5, 10.6, 11.8, 12.5, 13.10, 14.7, 15.3, 18.5, CCP2.3, CCP3.4, CCP4.4, CCP5.3, CCP5.4, Table CCP5.2, CCP6.3, CCP7.5, Figure TS14.d\}
SPM.D.1.2 Opportunities for climate resilient development are not equitably distributed around the world (very high confidence). Climate impacts and risks exacerbate vulnerability and social and economic inequities and consequently increase persistent and acute development challenges, especially in developing regions and sub-regions, and in particularly exposed sites, including coasts, small islands, deserts, mountains and polar regions. This in turn undermines efforts to achieve sustainable development, particularly for vulnerable and marginalized communities (very high confidence). {2.5, 4.4, 4.7, 6.3, 9.4, Box 6.4, Figure 6.5, Table 18.5, CWGB URBAN, CCB HEALTH, CCP2.2, CCP3.2, CCP3.3, CCP5.4, CCP6.2}

SPM.D.1.3 Embedding effective and equitable adaptation and mitigation in development planning can reduce vulnerability, conserve and restore ecosystems, and enable climate resilient development. This is especially challenging in localities with persistent development gaps and limited resources (high confidence). Dynamic trade-offs and competing priorities exist between mitigation, adaptation, and development. Integrated and inclusive system-oriented solutions based on equity and social and climate justice reduce risks and enable climate resilient development (high confidence). {1.4, 2.6, 3.6, 4.7, 4.8, Box 4.5, Box 4.8, 5.13, 7.4, 8.5, 9.4, 10.6, Box 9.3, Box 2.2, 12.5, 12.6, 13.3, 13.4, 13.10, 14.7, 18.4, CCB HEALTH, SRCCL, CCB DEEP, CCP2, CCP5.4}

There is a rapidly narrowing window of opportunity to enable climate resilient development

Figure SPM.5: Climate resilient development (CRD) is the process of implementing greenhouse gas mitigation and adaptation measures to support sustainable development. This figure builds on Figure SPM.9 in AR5 WGII (depicting climate resilient pathways) by describing how CRD pathways are the result of cumulative societal choices and actions within multiple arenas. Panel (a): Societal choices towards higher CRD (green cog) or lower CRD (red cog) result from interacting decisions and actions by diverse government, private sector and civil society actors, in the context of climate risks, adaptation limits and development gaps. These actors engage with adaptation, mitigation and development actions in political, economic and financial, ecological, socio-cultural, knowledge and technology, and community arenas from local to international levels. Opportunities for climate resilient development are not equitably distributed around the world. Panel (b): Cumulatively, societal choices, which are made continuously, shift global development pathways towards higher (green) or lower (red) climate resilient development. Past conditions (past emissions, climate change and...
development) have already eliminated some development pathways towards higher CRD (dashed green line). Panel (c): Higher CRD is characterised by outcomes that advance sustainable development for all. Climate resilient development is progressively harder to achieve with global warming levels beyond 1.5°C. Inadequate progress towards the Sustainable Development Goals (SDGs) by 2030 reduces climate resilient development prospects. There is a narrowing window of opportunity to shift pathways towards more climate resilient development futures as reflected by the adaptation limits and increasing climate risks, considering the remaining carbon budgets. (Figure SPM.2, Figure SPM.3) {2.6, 3.6, 7.2, 7.3, 7.4, 8.3, 8.4, 8.5, 16.4, 16.5, 17.3, 17.4, 17.5, 18.1, 18.2, 18.3, 18.4, Figure 18.1, Figure 18.2, Figure 18.3, Box 18.1, CCB COVID, CCB GENDER, CCB HEALTH, CCB INDIG, CCB SLR, AR6 WGI Table SPM.1 and Table SPM.2, SR1.5 Figure SPM.1, Figure TS.14b}

Enabling Climate Resilient Development

SPM.D.2 Climate resilient development is enabled when governments, civil society and the private sector make inclusive development choices that prioritise risk reduction, equity and justice, and when decision-making processes, finance and actions are integrated across governance levels, sectors and timeframes (*very high confidence*). Climate resilient development is facilitated by international cooperation and by governments at all levels working with communities, civil society, educational bodies, scientific and other institutions, media, investors and businesses; and by developing partnerships with traditionally marginalised groups, including women, youth, Indigenous Peoples, local communities and ethnic minorities (*high confidence*). These partnerships are most effective when supported by enabling political leadership, institutions, resources, including finance, as well as climate services, information and decision support tools (*high confidence*). (Figure SPM.5) {1.3, 1.4, 1.5, 2.7, 3.6, 4.8, 5.14, 6.4, 7.4, 8.5, 8.6, 9.4, 10.6, 11.8, 12.5, 13.11, 14.7, 15.6, 15.7, 17.4, 17.6, 18.4, 18.5, CCP2.4, CCP3.4, CCP4.4, CCP5.4, CCP6.4, CCP7.6, CCB HEALTH, CCB GENDER, CCB INDIG, CCB DEEP, CCB NATURAL, CCB SLR}

SPM.D.2.1 Climate resilient development is advanced when actors work in equitable, just and enabling ways to reconcile divergent interests, values and worldviews, toward equitable and just outcomes (*high confidence*). These practices build on diverse knowledges about climate risk and chosen development pathways account for local, regional and global climate impacts, risks, barriers and opportunities (*high confidence*). Structural vulnerabilities to climate change can be reduced through carefully designed and implemented legal, policy, and process interventions from the local to global that address inequities based on gender, ethnicity, disability, age, location and income (*very high confidence*). This includes rights-based approaches that focus on capacity-building, meaningful participation of the most vulnerable groups, and their access to key resources, including financing, to reduce risk and adapt (*high confidence*). Evidence shows that climate resilient development processes link scientific, Indigenous, local, practitioner and other forms of knowledge, and are more effective and sustainable because they are locally appropriate and lead to more legitimate, relevant and effective actions (*high confidence*). Pathways towards climate resilient development overcome jurisdictional and organizational barriers, and are founded on societal choices that accelerate and deepen key system transitions (*very high confidence*). Planning processes and decision analysis tools can help identify ‘low regrets’ options that enable mitigation and adaptation in the face of change, complexity, deep uncertainty and divergent views (*medium confidence*). {1.3, 1.4, 1.5, 2.7, 3.6, 4.8, 5.14, 6.4, 7.4, 8.5, 8.6, 9.4, 10.6, 11.8, 12.5, 13.11, 14.7, 15.6, 15.7, 17.2-17.6, 18.2-18.4, CCP2.3-2.4, CCP3.4, CCP4.4, CCP5.4, CCP6.4, CCP7.6, Box 8.7, Box 9.2, CCB HEALTH, CCB INDIG, CCB DEEP, CCB NATURAL, CCB SLR}

SPM.D.2.2 Inclusive governance contributes to more effective and enduring adaptation outcomes and enables climate resilient development (*high confidence*). Inclusive processes strengthen the ability of governments and other stakeholders to jointly consider factors such as the rate and magnitude of change and uncertainties, associated impacts, and timescales of different climate resilient development pathways given past development choices leading to past emissions and scenarios of future global warming (*high confidence*). Associated societal choices are made continuously through interactions in arenas of engagement from local to international levels. The quality and outcome of these interactions helps determine whether development pathways shift towards or away from climate resilient development (*medium confidence*). (Figure SPM.5) {2.7, 3.6, 4.8, 5.14, 6.4, 7.4, 8.5, 8.6, 9.4, 10.6, 11.8, 12.5, 13.11, 14.7, 15.6, 15.7, 17.2-17.6, 18.2-18.4, CCP2.3-2.4, CCP3.4, CCP4.4, CCP5.4, CCP6.4, CCP7.6, Box 8.7, Box 9.2, CCB HEALTH, CCB INDIG, CCB DEEP, CCB NATURAL, CCB SLR}
SPM.D.2.3 Governance for climate resilient development is most effective when supported by formal and informal institutions and practices that are well-aligned across scales, sectors, policy domains and timeframes. Governance efforts that advance climate resilient development account for the dynamic, uncertain and context-specific nature of climate-related risk, and its interconnections with non-climate risks. Institutions\(^48\) that enable climate resilient development are flexible and responsive to emergent risks and facilitate sustained and timely action. Governance for climate resilient development is enabled by adequate and appropriate human and technological resources, information, capacities and finance. (high confidence) {2.7, 3.6, 4.8, 5.14, 6.3, 6.4, 7.4, 8.5, 8.6, 9.4, 10.6, 11.8, 12.5, 13.11, 14.7, 15.6, 15.7, 17.2-17.6, 18.2, 18.4, CCP2.3-2.4, CCP3.4, CCP4.4, CCP5.4, CCP6.4, CCP7.6, CCB HEALTH, CCB GENDER, CCB INDIG, CCB DEEP, CCB NATURAL, CCB SLR}\)

Climate Resilient Development for Natural and Human Systems

SPM.D.3 Interactions between changing urban form, exposure and vulnerability can create climate change-induced risks and losses for cities and settlements. However, the global trend of urbanisation also offers a critical opportunity in the near-term, to advance climate resilient development (high confidence). Integrated, inclusive planning and investment in everyday decision-making about urban infrastructure, including social, ecological and grey/physical infrastructures, can significantly increase the adaptive capacity of urban and rural settlements. Equitable outcomes contributes to multiple benefits for health and well-being and ecosystem services, including for Indigenous Peoples, marginalised and vulnerable communities (high confidence). Climate resilient development in urban areas also supports adaptive capacity in more rural places through maintaining peri-urban supply chains of goods and services and financial flows (medium confidence). Coastal cities and settlements play an especially important role in advancing climate resilient development (high confidence). {6.2, 6.3, 18.3, Table 6.6, Box 9.8, CCP6.2, CCP2.1. CCP2.2, CWGB URBAN}

SPM.D.3.1 Taking integrated action for climate resilience to avoid climate risk requires urgent decision making for the new built environment and retrofitting existing urban design, infrastructure and land use. Based on socioeconomic circumstances, adaptation and sustainable development actions will provide multiple benefits including for health and well-being, particularly when supported by national governments, non-governmental organisations and international agencies that work across sectors in partnerships with local communities. Equitable partnerships between local and municipal governments, the private sector, Indigenous Peoples, local communities, and civil society can, including through international cooperation, advance climate resilient development by addressing structural inequalities, insufficient financial resources, cross-city risks and the integration of Indigenous knowledge and Local knowledge. (high confidence) {6.2, 6.3, 6.4, 7.4, 8.5, 9.4, 10.5. 12.5, 17.4, 18.2, Table 6.6, Table 17.8, Box 18.1, CCP2.4, CCB GENDER, CCB INDIG, CCB NATURAL, CCB FINANCE, CWGB URBAN}

SPM.D.3.2 Rapid global urbanisation offers opportunities for climate resilient development in diverse contexts from rural and informal settlements to large metropolitan areas (high confidence). Dominant models of energy intensive and market-led urbanisation, insufficient and misaligned finance and a predominant focus on grey infrastructure in the absence of integration with ecological and social approaches, risks missing opportunities for adaptation and locking in maladaptation (high confidence). Poor land use planning and siloed approaches to health, ecological and social planning also exacerbates, vulnerability in already marginalised

\(^48\) Institutions: Rules, norms and conventions that guide, constrain or enable human behaviours and practices. Institutions can be formally established, for instance through laws and regulations, or informally established, for instance by traditions or customs. Institutions may spur, hinder, strengthen, weaken or distort the emergence, adoption and implementation of climate action and climate governance.
SPM.D.3.3 Urban systems are critical, interconnected sites for enabling climate resilient development, especially at the coast. Coastal cities and settlements play a key role in moving toward higher climate resilient development given firstly, almost 11% of the global population – 896 million people – lived within the Low Elevation Coastal Zone (LECZ) in 2020, potentially increasing to beyond 1 billion people by 2050, and these people, and associated development and coastal ecosystems, face escalating climate compounded risks, including sea level rise. Secondly, these coastal cities and settlements make key contributions to climate resilient development through their vital role in national economies and inland communities, global trade supply chains, cultural exchange, and centres of innovation. (high confidence) {6.2, Box 15.2, CCP2.1, CCP2.2, Table CCP2.4, CCB SLR}

SPM.D.4 Safeguarding biodiversity and ecosystems is fundamental to climate resilient development, in light of the threats climate change poses to them and their roles in adaptation and mitigation (very high confidence). Recent analyses, drawing on a range of lines of evidence, suggest that maintaining the resilience of biodiversity and ecosystem services at a global scale depends on effective and equitable conservation of approximately 30% to 50% of Earth’s land, freshwater and ocean areas, including currently near-natural ecosystems (high confidence). {2.4, 2.5, 2.6, 3.4, Box 3.4, 3.5, 3.6, 12.5, 13.3, 13.4, 13.5, 13.10, CCB NATURAL, CCB INDIG}

SPM.D.4.1 Building the resilience of biodiversity and supporting ecosystem integrity can maintain benefits for people, including livelihoods, human health and well-being and the provision of food, fibre and water, as well as contributing to disaster risk reduction and climate change adaptation and mitigation. {2.2, 2.5, 2.6, Table 2.6, Table 2.7, 3.5, 3.6, 5.8, 5.13, 5.14, 12.5, Box 5.11 CCP5.4, CCB NATURAL, CCB ILLNESS, CCB COVID, CCB GENDER, CCB INDIG, CCB MIGRATE}

SPM.D.4.2 Protecting and restoring ecosystems is essential for maintaining and enhancing the resilience of the biosphere (very high confidence). Degradation and loss of ecosystems is also a cause of greenhouse gas emissions and is at increasing risk of being exacerbated by climate change impacts, including droughts and wildfire (high confidence). Climate resilient development avoids adaptation and mitigation measures that damage ecosystems (high confidence). Documented examples of adverse impacts of land-based measures intended as mitigation, when poorly implemented, include afforestation of grasslands, savannas and peatlands, and risks from bioenergy crops at large scale to water supply, food security and biodiversity (high confidence). {2.4, 2.5, Box 2.2, 3.4, 3.5, Box 3.4, Box 9.3, CCP7.3, CCB NATURAL, CWGB BIOECONOMY}

SPM.D.4.3 Biodiversity and ecosystem services have limited capacity to adapt to increasing global warming levels, which will make climate resilient development progressively harder to achieve beyond 1.5°C warming (very high confidence). Consequences of current and future global warming for climate resilient development include reduced effectiveness of EbA and approaches to climate change mitigation based on ecosystems and amplifying feedbacks to the climate system (high confidence). {2.4, 2.5, 2.6, 3.4, 3.5, 3.6, 12.5, 13.2, 13.3, 13.10, 14.5, 14.5, 15.3, 17.3, 17.6, Box 14.3, Box 3.4, Table 5.2, CCP5.3, CCP5.4, Figure TS.14d, CCB EXTREMES, CCB ILLNESS, CCB NATURAL, CCB SLR, SR1.5, SRCCL, SROCC}

49 LECZ, coastal areas below 10 m of elevation above sea level that are hydrologically connected to the sea

50 Ecosystem integrity refers to the ability of ecosystems to maintain key ecological processes, recover from disturbance, and adapt to new conditions.
Achieving Climate Resilient Development

SPM.D.5 It is unequivocal that climate change has already disrupted human and natural systems. Past and current development trends (past emissions, development and climate change) have not advanced global climate resilient development (very high confidence). Societal choices and actions implemented in the next decade determine the extent to which medium- and long-term pathways will deliver higher or lower climate resilient development (high confidence). Importantly climate resilient development prospects are increasingly limited if current greenhouse gas emissions do not rapidly decline, especially if 1.5°C global warming is exceeded in the near term (high confidence). These prospects are constrained by past development, emissions and climate change, and enabled by inclusive governance, adequate and appropriate human and technological resources, information, capacities and finance (high confidence). {1.2, 1.4, 1.5, 2.6, 2.7, 3.6, 4.7, 4.8, 5.14, 6.4, 7.4, 8.3, 8.5, 8.6, 9.3, 9.4, 9.5, 10.6, 11.8, 12.5, 13.10, 13.11, 14.7, 15.3, 15.6, 15.7, 16.2, 16.4, 16.5, 16.6, 17.2-17.6, 18.2-18.5, CCP2.3-2.4, CCP3.4, CCP4.4, Table CCP5.2, CCP5.3, CCP5.4, CCP6.3, CCP6.4, CCP7.5, CCP7.6, Figure TS.14d, CCB DEEP, CCB HEALTH, CCB INDIG, CCB DEEP, CCB NATURAL, CCB SLR}

SPM.D.5.1 Climate resilient development is already challenging at current global warming levels (high confidence). The prospects for climate resilient development will be further limited if global warming levels exceeds 1.5°C (high confidence) and not be possible in some regions and sub-regions if the global warming level exceeds 2°C (medium confidence). Climate resilient development is most constrained in regions/subregions in which climate impacts and risks are already advanced, including low-lying coastal cities and settlements, small islands, deserts, mountains and polar regions (high confidence). Regions and subregions with high levels of poverty, water, food and energy insecurity, vulnerable urban environments, degraded ecosystems and rural environments, and/or few enabling conditions, face many non-climate challenges that inhibit climate resilient development which are further exacerbated by climate change (high confidence). {1.2, 9.3, 9.4, 9.5, 10.6, 11.8, 12.5, 13.10, 14.7, 15.3, CCP2.3, CCP3.4, CCP4.4, Box 6.6. CCP5.3, Table CCP5.2, CCP6.3, CCP7.5, Figure TS.14d}

SPM.D.5.2 Inclusive governance, investment aligned with climate resilient development, access to appropriate technology and rapidly scaled-up finance, and capacity building of governments at all levels, the private sector and civil society enable climate resilient development. Experience shows that climate resilient development processes are timely, anticipatory, integrative, flexible and action focused. Common goals and social learning build adaptive capacity for climate resilient development. When implementing adaptation and mitigation together, and taking trade-offs into account, multiple benefits and synergies for human well-being as well as ecosystem and planetary health can be realised. Prospects for climate resilient development are increased by inclusive processes involving local knowledge and Indigenous Knowledge as well as processes that coordinate across risks and institutions. Climate resilient development is enabled by increased international cooperation including mobilising and enhancing access to finance, particularly for vulnerable regions, sectors and groups. (high confidence) (Figure SPM.5) {2.7, 3.6, 4.8, 5.14, 6.4, 7.4, 8.5, 8.6, 9.4, 10.6, 11.8, 12.5, 13.11, 14.7, 15.6, 15.7, 17.2-17.6, 18.2-18.5, CCP2.3-2.4, CCP3.4, CCP4.4, CCP5.4, CCP6.4, CCP7.6, CCB HEALTH, CCB INDIG, CCB DEEP, CCB NATURAL, CCB SLR}

SPM.D.5.3 The cumulative scientific evidence is unequivocal: Climate change is a threat to human well-being and planetary health. Any further delay in concerted anticipatory global action on adaptation and mitigation will miss a brief and rapidly closing window of opportunity to secure a liveable and sustainable future for all. (very high confidence) {1.2, 1.4, 1.5, 16.2, 16.4, 16.5, 16.6, 17.4, 17.5, 17.6, 18.3, 18.4, 18.5, CWGB URBAN, CCB DEEP, Table SM16.24, WGI SPM, SROCC SPM, SRCCL SPM}