A. Current Status and Trends
A.1 Human activities, principally through emissions of greenhouse gases, have unequivocally caused
global warming, with global surface temperature reaching 1.1°C above 1850–1900 in 2011–2020. Global
greenhouse gas emissions have continued to increase, with unequal historical and ongoing contributions
arising from unsustainable energy use, land use and land-use change, lifestyles and patterns of
consumption and production across regions, between and within countries, and among individuals (high
confidence). {2.1, Figure 2.1, Figure 2.2}
A.2 Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have
occurred. Human-caused climate change is already affecting many weather and climate extremes in
every region across the globe. This has led to widespread adverse impacts and related losses and
damages to nature and people (high confidence). Vulnerable communities who have historically
contributed the least to current climate change are disproportionately affected (high confidence). {2.1,
Table 2.1, Figure 2.2 and 2.3} (Figure SPM.1)
A.3 Adaptation planning and implementation has progressed across all sectors and regions, with
documented benefits and varying effectiveness. Despite progress, adaptation gaps exist, and will
continue to grow at current rates of implementation. Hard and soft limits to adaptation have been
reached in some ecosystems and regions. Maladaptation is happening in some sectors and regions.
Current global financial flows for adaptation are insufficient for, and constrain implementation of,
adaptation options, especially in developing countries (high confidence). {2.2, 2.3}
A.4 Policies and laws addressing mitigation have consistently expanded since AR5. Global GHG
emissions in 2030 implied by nationally determined contributions (NDCs) announced by October 2021
make it likely that warming will exceed 1.5°C during the 21st century and make it harder to limit
warming below 2°C. There are gaps between projected emissions from implemented policies and those
from NDCs and finance flows fall short of the levels needed to meet climate goals across all sectors and
regions. (high confidence) {2.2, 2.3, Figure 2.5, Table 2.2}
B. Future Climate Change, Risks, and Long-Term Responses
B.1 Continued greenhouse gas emissions will lead to increasing global warming, with the best estimate
of reaching 1.5°C in the near term in considered scenarios and modelled pathways. Every increment of
global warming will intensify multiple and concurrent hazards (high confidence). Deep, rapid, and
sustained reductions in greenhouse gas emissions would lead to a discernible slowdown in global
warming within around two decades, and also to discernible changes in atmospheric composition within
a few years (high confidence). {Cross-Section Boxes 1 and 2, 3.1, 3.3, Table 3.1, Figure 3.1, 4.3} (Figure
SPM.2, Box SPM.1)
B.2 For any given future warming level, many climate-related risks are higher than assessed in AR5,
and projected long-term impacts are up to multiple times higher than currently observed (high
confidence). Risks and projected adverse impacts and related losses and damages from climate change
escalate with every increment of global warming (very high confidence). Climatic and non-climatic risks
will increasingly interact, creating compound and cascading risks that are more complex and difficult
to manage (high confidence). {Cross-Section Box.2, 3.1, 4.3, Figure 3.3, Figure 4.3} (Figure SPM.3,
Figure SPM.4)
B.3 Some future changes are unavoidable and/or irreversible but can be limited by deep, rapid and
sustained global greenhouse gas emissions reduction. The likelihood of abrupt and/or irreversible
changes increases with higher global warming levels. Similarly, the probability of low-likelihood
outcomes associated with potentially very large adverse impacts increases with higher global warming
levels. (high confidence) {3.1}
B.4 Adaptation options that are feasible and effective today will become constrained and less effective
with increasing global warming. With increasing global warming, losses and damages will increase
and additional human and natural systems will reach adaptation limits. Maladaptation can be
avoided by flexible, multi-sectoral, inclusive, long-term planning and implementation of adaptation
actions, with co-benefits to many sectors and systems. (high confidence) {3.2, 4.1, 4.2, 4.3}
B.5 Limiting human-caused global warming requires net zero CO2 emissions. Cumulative carbon
emissions until the time of reaching net-zero CO2 emissions and the level of greenhouse gas emission
reductions this decade largely determine whether warming can be limited to 1.5°C or 2°C (high
confidence). Projected CO2 emissions from existing fossil fuel infrastructure without additional
abatement would exceed the remaining carbon budget for 1.5°C (50%) (high confidence). {2.3, 3.1,
3.3, Table 3.1}
B.6 All global modelled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot,
and those that limit warming to 2°C (>67%), involve rapid and deep and, in most cases, immediate
greenhouse gas emissions reductions in all sectors this decade. Global net zero CO2 emissions are
reached for these pathway categories, in the early 2050s and around the early 2070s, respectively.
(high confidence) {3.3, 3.4, 4.1, 4.5, Table 3.1} (Figure SPM.5, Box SPM.1)
B.7 If warming exceeds a specified level such as 1.5°C, it could gradually be reduced again by
achieving and sustaining net negative global CO2 emissions. This would require additional
deployment of carbon dioxide removal, compared to pathways without overshoot, leading to greater
feasibility and sustainability concerns. Overshoot entails adverse impacts, some irreversible, and
additional risks for human and natural systems, all growing with the magnitude and duration of
overshoot. (high confidence) {3.1, 3.3, 3.4, Table 3.1, Figure 3.6}
C. Responses in the Near Term
C.1 Climate change is a threat to human well-being and planetary health (very high confidence). There
is a rapidly closing window of opportunity to secure a liveable and sustainable future for all (very high
confidence). Climate resilient development integrates adaptation and mitigation to advance sustainable
development for all, and is enabled by increased international cooperation including improved access to
adequate financial resources, particularly for vulnerable regions, sectors and groups, and inclusive
governance and coordinated policies (high confidence). The choices and actions implemented in this
decade will have impacts now and for thousands of years (high confidence). {3.1, 3.3, 4.1, 4.2, 4.3, 4.4,
4.7, 4.8, 4.9, Figure 3.1, Figure 3.3, Figure 4.2} (Figure SPM.1; Figure SPM.6)
C.2 Deep, rapid and sustained mitigation and accelerated implementation of adaptation actions in
this decade would reduce projected losses and damages for humans and ecosystems (very high
confidence), and deliver many co-benefits, especially for air quality and health (high confidence).
Delayed mitigation and adaptation action would lock-in high-emissions infrastructure, raise risks of
stranded assets and cost-escalation, reduce feasibility, and increase losses and damages (high
confidence). Near-term actions involve high up-front investments and potentially disruptive changes
that can be lessened by a range of enabling policies (high confidence). {2.1, 2.2, 3.1, 3.2, 3.3, 3.4, 4.1,
4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8}
C.3 Rapid and far-reaching transitions across all sectors and systems are necessary to achieve deep
and sustained emissions reductions and secure a liveable and sustainable future for all. These system
transitions involve a significant upscaling of a wide portfolio of mitigation and adaptation options.
Feasible, effective, and low-cost options for mitigation and adaptation are already available, with
differences across systems and regions. (high confidence) {4.1, 4.5, 4.6} (Figure SPM.7)
C.4 Accelerated and equitable action in mitigating and adapting to climate change impacts is critical
to sustainable development. Mitigation and adaptation actions have more synergies than trade-offs
with Sustainable Development Goals. Synergies and trade-offs depend on context and scale of
implementation. (high confidence) {3.4, 4.2, 4.4, 4.5, 4.6, 4.9, Figure 4.5}
C.5 Prioritising equity, climate justice, social justice, inclusion and just transition processes can
enable adaptation and ambitious mitigation actions and climate resilient development. Adaptation
outcomes are enhanced by increased support to regions and people with the highest vulnerability to
climatic hazards. Integrating climate adaptation into social protection programs improves resilience.
Many options are available for reducing emission-intensive consumption, including through
behavioural and lifestyle changes, with co-benefits for societal well-being. (high confidence) {4.4, 4.5}
C.6 Effective climate action is enabled by political commitment, well-aligned multilevel governance,
institutional frameworks, laws, policies and strategies and enhanced access to finance and technology.
Clear goals, coordination across multiple policy domains, and inclusive governance processes
facilitate effective climate action. Regulatory and economic instruments can support deep emissions
reductions and climate resilience if scaled up and applied widely. Climate resilient development
benefits from drawing on diverse knowledge. (high confidence) {2.2, 4.4, 4.5, 4.7}
C.7 Finance, technology and international cooperation are critical enablers for accelerated climate
action. If climate goals are to be achieved, both adaptation and mitigation financing would need to
increase many-fold. There is sufficient global capital to close the global investment gaps but there are
barriers to redirect capital to climate action. Enhancing technology innovation systems is key to
accelerate the widespread adoption of technologies and practices. Enhancing international
cooperation is possible through multiple channels. (high confidence) {2.3, 4.8}